Suppr超能文献

交叉分类多水平分析个体异质性和判别准确性(MAIHDA)评估医院绩效:以急性心肌梗死后患者生存率的医院差异为例。

Cross-classified Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA) to evaluate hospital performance: the case of hospital differences in patient survival after acute myocardial infarction.

机构信息

Unit for Social Epidemiology, Faculty of Medicine, Lund University, Malmö, Sweden

Department of Public Health and Epidemiology, Pontificia Universidad Javeriana - Cali, Cali, Colombia.

出版信息

BMJ Open. 2020 Oct 23;10(10):e036130. doi: 10.1136/bmjopen-2019-036130.

Abstract

OBJECTIVE

To describe a novel strategy, Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA) to evaluate hospital performance, by analysing differences in 30-day mortality after a first-ever acute myocardial infarction (AMI) in Sweden.

DESIGN

Cross-classified study.

SETTING

68 Swedish hospitals.

PARTICIPANTS

43 247 patients admitted between 2007 and 2009, with a first-ever AMI.

PRIMARY AND SECONDARY OUTCOME MEASURES

We evaluate hospital performance by analysing differences in 30-day mortality after a first-ever AMI using a cross-classified multilevel analysis. We classified the patients into 10 categories according to a risk score (RS) for 30-day mortality and created 680 strata defined by combining hospital and RS categories.

RESULTS

In the cross-classified multilevel analysis the overall RS adjusted hospital 30-day mortality in Sweden was 4.78% and the between-hospital variation was very small (variance partition coefficient (VPC)=0.70%, area under the curve (AUC)=0.54). The benchmark value was therefore achieved by all hospitals. However, as expected, there were large differences between the RS categories (VPC=34.13%, AUC=0.77) CONCLUSIONS: MAIHDA is a useful tool to evaluate hospital performance. The benefit of this novel approach to adjusting for patient RS is that it allowed one to estimate separate VPCs and AUC statistics to simultaneously evaluate the influence of RS categories and hospital differences on mortality. At the time of our analysis, all hospitals in Sweden were performing homogeneously well. That is, the benchmark target for 30-day mortality was fully achieved and there were not relevant hospital differences. Therefore, possible quality interventions should be universal and oriented to maintain the high hospital quality of care.

摘要

目的

通过分析瑞典首次急性心肌梗死(AMI)后 30 天死亡率的差异,描述一种新的评估医院绩效的策略,即个体异质性和判别准确性的多层次分析(MAIHDA)。

设计

交叉分类研究。

设置

68 家瑞典医院。

参与者

2007 年至 2009 年间收治的 43247 名首次 AMI 患者。

主要和次要结果测量

我们通过交叉分类多水平分析分析首次 AMI 后 30 天死亡率的差异来评估医院绩效。我们根据 30 天死亡率风险评分(RS)将患者分为 10 个类别,并创建了 680 个由医院和 RS 类别组合定义的层。

结果

在交叉分类多水平分析中,瑞典总体 RS 调整后的医院 30 天死亡率为 4.78%,医院间差异很小(方差分量系数(VPC)=0.70%,曲线下面积(AUC)=0.54)。因此,所有医院都达到了基准值。然而,正如预期的那样,RS 类别之间存在很大差异(VPC=34.13%,AUC=0.77)。

结论

MAIHDA 是评估医院绩效的有用工具。这种新的调整患者 RS 的方法的好处是,它允许同时估计单独的 VPC 和 AUC 统计数据,以评估 RS 类别和医院差异对死亡率的影响。在我们进行分析时,瑞典所有医院的表现都非常一致。也就是说,30 天死亡率的基准目标已经完全实现,医院之间没有明显的差异。因此,可能的质量干预措施应该是普遍的,并侧重于维持医院高质量的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2afc/7590346/9e605bfbc5af/bmjopen-2019-036130f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验