Del Genio Anthony D, Kiang Nancy Y, Way Michael J, Amundsen David S, Sohl Linda E, Fujii Yuka, Chandler Mark, Aleinov Igor, Colose Christopher M, Guzewich Scott D, Kelley Maxwell
NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.
Astrophys J. 2019 Oct 10;884(1). doi: 10.3847/1538-4357/ab3be8. Epub 2019 Oct 14.
The potential habitability of known exoplanets is often categorized by a nominal equilibrium temperature assuming a Bond albedo of either ∼0.3, similar to Earth, or 0. As an indicator of habitability, this leaves much to be desired, because albedos of other planets can be very different, and because surface temperature exceeds equilibrium temperature due to the atmospheric greenhouse effect. We use an ensemble of general circulation model simulations to show that for a range of habitable planets, much of the variability of Bond albedo, equilibrium temperature and even surface temperature can be predicted with useful accuracy from incident stellar flux and stellar temperature, two known parameters for every confirmed exoplanet. Earth's Bond albedo is near the minimum possible for habitable planets orbiting G stars, because of increasing contributions from clouds and sea ice/snow at higher and lower instellations, respectively. For habitable M star planets, Bond albedo is usually lower than Earth's because of near-IR HO absorption, except at high instellation where clouds are important. We apply relationships derived from this behavior to several known exoplanets to derive zeroth-order estimates of their potential habitability. More expansive multivariate statistical models that include currently non-observable parameters show that greenhouse gas variations produce significant variance in albedo and surface temperature, while increasing length of day and land fraction decrease surface temperature; insights for other parameters are limited by our sampling. We discuss how emerging information from global climate models might resolve some degeneracies and help focus scarce observing resources on the most promising planets.
已知系外行星的潜在宜居性通常根据名义平衡温度进行分类,假设邦德反照率为0.3(与地球相似)或0。作为宜居性的一个指标,这还有很大的改进空间,因为其他行星的反照率可能非常不同,而且由于大气温室效应,表面温度会超过平衡温度。我们使用一组大气环流模型模拟来表明,对于一系列宜居行星,邦德反照率、平衡温度甚至表面温度的大部分变化都可以根据入射恒星通量和恒星温度这两个每个已确认系外行星的已知参数,以有用的精度进行预测。由于分别在较高和较低的恒星辐射下,云层和海冰/雪的贡献增加,地球的邦德反照率接近围绕G型恒星运行的宜居行星可能的最小值。对于宜居的M型恒星行星,由于近红外水吸收,邦德反照率通常低于地球,除非在云层起重要作用的高恒星辐射下。我们将从这种行为中得出的关系应用于几个已知的系外行星,以得出它们潜在宜居性的零阶估计。更广泛的多变量统计模型,包括目前不可观测的参数,表明温室气体变化会导致反照率和表面温度产生显著变化,而日长增加和陆地面积比例增加会降低表面温度;我们采样对其他参数的见解有限。我们讨论了全球气候模型中出现的信息如何可能解决一些简并性问题,并有助于将稀缺的观测资源集中在最有希望的行星上。