Suppr超能文献

词汇可预测性效应是线性的,而非对数性的:对句子理解概率模型的启示。

Word predictability effects are linear, not logarithmic: Implications for probabilistic models of sentence comprehension.

作者信息

Brothers Trevor, Kuperberg Gina R

机构信息

Department of Psychology, Tufts University, Medford, MA USA.

Department of Psychiatry and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA.

出版信息

J Mem Lang. 2021 Feb;116. doi: 10.1016/j.jml.2020.104174. Epub 2020 Sep 18.

Abstract

During language comprehension, we routinely use information from the prior context to help identify the meaning of individual words. While measures of online processing difficulty, such as reading times, are strongly influenced by contextual predictability, there is disagreement about the mechanisms underlying this lexical predictability effect, with different models predicting different linking functions - (Reichle, Rayner & Pollatsek, 2003) or (Levy, 2008). To help resolve this debate, we conducted two highly-powered experiments (self-paced reading, N = 216; cross-modal picture naming, N = 36), and a meta-analysis of prior eye-tracking while reading studies (total N = 218). We observed a robust relationship between lexical predictability and word processing times across all three studies. Beyond their methodological implications, these findings also place important constraints on predictive processing models of language comprehension. In particular, these results directly contradict the empirical predictions of , while supporting a of lexical prediction effects in comprehension.

摘要

在语言理解过程中,我们通常会利用前文语境中的信息来帮助确定单个单词的含义。虽然诸如阅读时间等在线处理难度的指标会受到语境可预测性的强烈影响,但对于这种词汇可预测性效应背后的机制存在分歧,不同的模型预测出不同的关联函数(Reichle、Rayner和Pollatsek,2003年)或(Levy,2008年)。为了帮助解决这一争论,我们进行了两项大规模实验(自定步速阅读,N = 216;跨模态图片命名,N = 36),并对之前阅读研究中的眼动追踪进行了荟萃分析(总N = 218)。在所有三项研究中,我们都观察到词汇可预测性与单词处理时间之间存在稳健的关系。除了其方法学意义外,这些发现也对语言理解的预测处理模型施加了重要限制。特别是,这些结果直接与 的实证预测相矛盾,同时支持了对理解中词汇预测效应的 。

相似文献

4
The effect of word predictability on reading time is logarithmic.词的可预测性对阅读时间的影响是对数的。
Cognition. 2013 Sep;128(3):302-19. doi: 10.1016/j.cognition.2013.02.013. Epub 2013 Jun 6.
9
Semantic similarity, predictability, and models of sentence processing.语义相似度、可预测性与句子处理模型。
Cognition. 2012 Mar;122(3):267-79. doi: 10.1016/j.cognition.2011.11.011. Epub 2011 Dec 23.

引用本文的文献

3
What's Surprising About Surprisal.关于意外性,有什么令人惊讶之处?
Comput Brain Behav. 2025;8(2):233-248. doi: 10.1007/s42113-025-00237-9. Epub 2025 Feb 21.
8
Language models outperform cloze predictability in a cognitive model of reading.语言模型在阅读认知模型中优于完形预测能力。
PLoS Comput Biol. 2024 Sep 25;20(9):e1012117. doi: 10.1371/journal.pcbi.1012117. eCollection 2024 Sep.
10
Strong Prediction: Language Model Surprisal Explains Multiple N400 Effects.强预测:语言模型意外值解释多种N400效应。
Neurobiol Lang (Camb). 2024 Apr 1;5(1):107-135. doi: 10.1162/nol_a_00105. eCollection 2024.

本文引用的文献

6
Robust research needs many lines of evidence.强有力的研究需要多方面的证据。
Nature. 2018 Jan 25;553(7689):399-401. doi: 10.1038/d41586-018-01023-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验