Suppr超能文献

绳索的推拉:分层编织材料

Pushing and Pulling on Ropes: Hierarchical Woven Materials.

作者信息

Moestopo Widianto P, Mateos Arturo J, Fuller Ritchie M, Greer Julia R, Portela Carlos M

机构信息

Division of Engineering and Applied Science California Institute of Technology Pasadena CA 91125 USA.

Independent Artist Newport News VA 23601 USA.

出版信息

Adv Sci (Weinh). 2020 Aug 24;7(20):2001271. doi: 10.1002/advs.202001271. eCollection 2020 Oct.

Abstract

Hierarchy in natural and synthetic materials has been shown to grant these architected materials properties unattainable independently by their constituent materials. While exceptional mechanical properties such as extreme resilience and high deformability have been realized in many human-made three-dimensional (3D) architected materials using beam-and-junction-based architectures, stress concentrations and constraints induced by the junctions limit their mechanical performance. A new hierarchical architecture in which fibers are interwoven to construct effective beams is presented. In situ tension and compression experiments of additively manufactured woven and monolithic lattices with 30 µm unit cells demonstrate the superior ability of woven architectures to achieve high tensile and compressive strains (>50%)-without failure events-via smooth reconfiguration of woven microfibers in the effective beams and junctions. Cyclic compression experiments reveal that woven lattices accrue less damage compared to lattices with monolithic beams. Numerical studies of woven beams with varying geometric parameters present new design spaces to develop architected materials with tailored compliance that is unachievable by similarly configured monolithic-beam architectures. Woven hierarchical design offers a pathway to make traditionally stiff and brittle materials more deformable and introduces a new building block for 3D architected materials with complex nonlinear mechanics.

摘要

天然材料和合成材料中的层次结构已被证明能赋予这些结构化材料一些其组成材料单独无法实现的特性。虽然在许多使用基于梁-节点架构的人造三维(3D)结构化材料中实现了诸如极高弹性和高可变形性等卓越的机械性能,但节点引起的应力集中和约束限制了它们的机械性能。本文提出了一种新的层次结构架构,其中纤维相互交织以构建有效的梁。对具有30微米单元胞的增材制造编织晶格和整体晶格进行的原位拉伸和压缩实验表明,编织架构具有卓越的能力,能够通过有效梁和节点中编织微纤维的平滑重新配置,实现高拉伸和压缩应变(>50%)且无失效事件。循环压缩实验表明,与具有整体梁的晶格相比,编织晶格积累的损伤更少。对具有不同几何参数的编织梁进行的数值研究提供了新的设计空间,以开发具有定制柔顺性的结构化材料,这是类似配置的整体梁架构无法实现的。编织层次结构设计提供了一条使传统上坚硬易碎的材料更具可变形性的途径,并为具有复杂非线性力学的3D结构化材料引入了一种新的构建模块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e56/7578876/7f8d8d2614b7/ADVS-7-2001271-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验