Suppr超能文献

纳米晶格:一类新兴的力学超材料。

Nanolattices: An Emerging Class of Mechanical Metamaterials.

机构信息

Department of Mechanical and Aerospace Engineering, University of California Irvine, CA, 92697, USA.

Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.

出版信息

Adv Mater. 2017 Oct;29(40). doi: 10.1002/adma.201701850. Epub 2017 Sep 5.

Abstract

In 1903, Alexander Graham Bell developed a design principle to generate lightweight, mechanically robust lattice structures based on triangular cells; this has since found broad application in lightweight design. Over one hundred years later, the same principle is being used in the fabrication of nanolattice materials, namely lattice structures composed of nanoscale constituents. Taking advantage of the size-dependent properties typical of nanoparticles, nanowires, and thin films, nanolattices redefine the limits of the accessible material-property space throughout different disciplines. Herein, the exceptional mechanical performance of nanolattices, including their ultrahigh strength, damage tolerance, and stiffness, are reviewed, and their potential for multifunctional applications beyond mechanics is examined. The efficient integration of architecture and size-affected properties is key to further develop nanolattices. The introduction of a hierarchical architecture is an effective tool in enhancing mechanical properties, and the eventual goal of nanolattice design may be to replicate the intricate hierarchies and functionalities observed in biological materials. Additive manufacturing and self-assembly techniques enable lattice design at the nanoscale; the scaling-up of nanolattice fabrication is currently the major challenge to their widespread use in technological applications.

摘要

1903 年,亚历山大·格雷厄姆·贝尔(Alexander Graham Bell)提出了一种设计原则,旨在基于三角形单元生成重量轻、机械强度高的格子结构;此后,该原则在轻量级设计中得到了广泛应用。一百多年后,同样的原理被用于纳米晶格材料的制造,即由纳米级成分组成的晶格结构。利用典型纳米粒子、纳米线和薄膜的尺寸依赖性特性,纳米晶格重新定义了不同学科中可获得的材料性能空间的极限。在此,综述了纳米晶格的卓越机械性能,包括超高强度、耐损伤性和刚度,并探讨了它们在力学以外的多功能应用中的潜力。结构和尺寸相关特性的有效集成是进一步开发纳米晶格的关键。引入分层结构是增强机械性能的有效工具,纳米晶格设计的最终目标可能是复制生物材料中观察到的复杂层次结构和功能。增材制造和自组装技术使纳米晶格的设计成为可能;纳米晶格制造的规模化是其在技术应用中广泛使用的主要挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验