Dreier Lauren, Jones Trevor J, Plummer Abigail, Košmrlj Andrej, Brun P-T
School of Architecture, Princeton University, Princeton, NJ, USA.
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
Nat Commun. 2025 Aug 25;16(1):7899. doi: 10.1038/s41467-025-61809-8.
Beading transforms flexible fiber networks into load-bearing structures by incorporating rigid, discrete elements in programmable weave patterns. Beaded assemblies function as mechanical metamaterials, where emergent mechanical behaviors arise from the interplay between geometry and material properties. Here, we investigate how this interplay governs the global mechanics of bead-thread networks. Using a combination of experiment and simple modeling, we identify conditions under which beaded structures undergo superjamming - a mechanically locked state that dramatically enhances load capacity. Our results show how potentially limiting factors such as gravity and friction can be leveraged to extend the domain of soft materials design into applications that demand rigidity.
串珠通过将刚性离散元件纳入可编程编织图案,将柔性纤维网络转变为承重结构。串珠组件作为机械超材料发挥作用,其新兴的力学行为源于几何形状与材料特性之间的相互作用。在此,我们研究这种相互作用如何支配串珠 - 线网络的整体力学性能。通过结合实验与简单建模,我们确定了串珠结构发生超堵塞(一种显著提高承载能力的机械锁定状态)的条件。我们的结果表明,重力和摩擦等潜在限制因素如何能够被利用,将软材料设计领域扩展到需要刚性的应用中。