Suppr超能文献

基于壳聚糖和聚丙烯酸树脂S 100的纳米α-山竹黄酮的合成。

Synthesis of nano-α mangostin based on chitosan and Eudragit S 100.

作者信息

Herdiana Yedi, Handaresta Devi Fitria, Joni I Made, Wathoni Nasrul, Muchtaridi Muchtaridi

机构信息

Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, Java, Indonesia.

Departement of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Java, Indonesia.

出版信息

J Adv Pharm Technol Res. 2020 Jul-Sep;11(3):95-100. doi: 10.4103/japtr.JAPTR_182_19. Epub 2020 Jul 14.

Abstract

Alpha-mangostin is a xanthone compound isolated from the mangosteen plant ( L.), which has various pharmacological activities. However, in its utilization alpha-mangostin is unstable and shows low solubility in the oral delivery system. Nanoparticles can deliver specific drugs to their workplace and increase the solubility. The objectives of this study were to create and characterize the alpha-mangostin nanoparticles based on chitosan and Eudragit® S 100. The nanoparticles were made by the ionic gelation method with comparisons core: Coating FI (1:2), FII (1:1), and FIII (2:1). Nanoparticles powder obtained using the spray pyrolysis method. Characterization using Fourier transform infrared indicates that the nanoparticles have been coated properly, and no damage occurred in the formula. The particle sizes for FI, FII, and FII are 373.381 ± 138.023 nm, 398.333 ± 184.977 nm, and 326.567 ± 130.366 nm, respectively, with a smooth surface. The entrapment efficiency value of FI, FII, and FIII are, respectively, 99.7692%, 99.6535%, and 99.476%. Alpha-mangostin was successfully encapsulated in chitosan-tripolyphosphate polymer by ionic gelation method and then coated with Eudragit S 100. Alpha-mangostin chitosan-eudragit nanoparticles (core: Polymer ratio of 1:2) yielded more entrapment efficiency.

摘要

α-山竹黄酮是一种从山竹植物(莽吉柿)中分离出的氧杂蒽酮类化合物,具有多种药理活性。然而,在其应用中,α-山竹黄酮不稳定,且在口服给药系统中溶解度较低。纳米颗粒可以将特定药物输送到作用部位并提高溶解度。本研究的目的是制备并表征基于壳聚糖和Eudragit® S 100的α-山竹黄酮纳米颗粒。通过离子凝胶法制备纳米颗粒,比较核:包衣比例FI(1:2)、FII(1:1)和FIII(2:1)。使用喷雾热解法获得纳米颗粒粉末。傅里叶变换红外光谱表征表明纳米颗粒已被正确包衣,配方未受损。FI、FII和FIII的粒径分别为373.381±138.023 nm、398.333±184.977 nm和326.567±130.366 nm,表面光滑。FI、FII和FIII的包封率分别为99.7692%、99.6535%和99.476%。通过离子凝胶法成功将α-山竹黄酮包封在壳聚糖-三聚磷酸钠聚合物中,然后用Eudragit S 100包衣。α-山竹黄酮壳聚糖-Eudragit纳米颗粒(核:聚合物比例为1:2)具有更高的包封率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b7/7574733/b88c6946ab45/JAPTR-11-95-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验