文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于注意力机制和多尺度池化对抗网络的全乳腺钼靶肿块分割

Whole mammographic mass segmentation using attention mechanism and multiscale pooling adversarial network.

作者信息

Wang Yuehang, Wang Shengsheng, Chen Juan, Wu Chun

机构信息

Jilin University, College of Software, Changchun, China.

Jilin University, College of Computer Science and Technology, Changchun, China.

出版信息

J Med Imaging (Bellingham). 2020 Sep;7(5):054503. doi: 10.1117/1.JMI.7.5.054503. Epub 2020 Oct 15.


DOI:10.1117/1.JMI.7.5.054503
PMID:33102621
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7565920/
Abstract

Since breast mass is a clear sign of breast cancer, its precise segmentation is of great significance for the diagnosis of breast cancer. However, the current diagnosis relies mainly on radiologists who spend time extracting features manually, which inevitably reduces the efficiency of diagnosis. Therefore, designing an automatic segmentation method is urgently necessary for the accurate segmentation of breast masses. We propose an effective attention mechanism and multiscale pooling conditional generative adversarial network (AM-MSP-cGAN), which accurately achieves mass automatic segmentation in whole mammograms. In AM-MSP-cGAN, U-Net is utilized as a generator network by incorporating attention mechanism (AM) into it, which allows U-Net to pay more attention to the target mass regions without additional cost. As a discriminator network, a convolutional neural network with multiscale pooling module is used to learn more meticulous features from the masses with rough and fuzzy boundaries. The proposed model is trained and tested on two public datasets: CBIS-DDSM and INbreast. Compared with other state-of-the-art methods, the AM-MSP-cGAN can achieve better segmentation results in terms of the dice similarity coefficient (Dice) and Hausdorff distance metrics, achieving top scores of 84.49% and 5.01 on CBIS-DDSM, and 83.92% and 5.81 on INbreast, respectively. Therefore, qualitative and quantitative experiments illustrate that the proposed model is effective and robust for the mass segmentation in whole mammograms. The proposed deep learning model is suitable for the automatic segmentation of breast masses, which provides technical assistance for subsequent pathological structure analysis.

摘要

由于乳腺肿块是乳腺癌的一个明显迹象,其精确分割对于乳腺癌的诊断具有重要意义。然而,目前的诊断主要依赖于放射科医生手动提取特征,这不可避免地降低了诊断效率。因此,设计一种自动分割方法对于乳腺肿块的准确分割迫在眉睫。我们提出了一种有效的注意力机制和多尺度池化条件生成对抗网络(AM-MSP-cGAN),它能在全乳腺钼靶图像中准确实现肿块的自动分割。在AM-MSP-cGAN中,U-Net被用作生成器网络,并融入了注意力机制(AM),这使得U-Net能够在不增加额外成本的情况下更多地关注目标肿块区域。作为判别器网络,使用了带有多尺度池化模块的卷积神经网络,以便从边界粗糙和模糊的肿块中学习更细致的特征。所提出的模型在两个公共数据集CBIS-DDSM和INbreast上进行了训练和测试。与其他现有方法相比,AM-MSP-cGAN在骰子相似系数(Dice)和豪斯多夫距离度量方面能取得更好的分割结果,在CBIS-DDSM上分别达到了84.49%和5.01的最高分,在INbreast上分别达到了83.92%和5.81的最高分。因此,定性和定量实验表明,所提出的模型对于全乳腺钼靶图像中的肿块分割是有效且稳健的。所提出的深度学习模型适用于乳腺肿块的自动分割,为后续的病理结构分析提供了技术支持。

相似文献

[1]
Whole mammographic mass segmentation using attention mechanism and multiscale pooling adversarial network.

J Med Imaging (Bellingham). 2020-9

[2]
SAP-cGAN: Adversarial learning for breast mass segmentation in digital mammogram based on superpixel average pooling.

Med Phys. 2021-3

[3]
TrEnD: A transformer-based encoder-decoder model with adaptive patch embedding for mass segmentation in mammograms.

Med Phys. 2023-5

[4]
Connected-UNets: a deep learning architecture for breast mass segmentation.

NPJ Breast Cancer. 2021-12-2

[5]
Convolutional neural network for automated mass segmentation in mammography.

BMC Bioinformatics. 2020-12-9

[6]
Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses.

Comput Methods Programs Biomed. 2021-3

[7]
ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.

Med Phys. 2021-1

[8]
Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.

Med Phys. 2022-9

[9]
AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms.

Phys Med Biol. 2020-2-28

[10]
Mass segmentation for whole mammograms via attentive multi-task learning framework.

Phys Med Biol. 2021-5-14

引用本文的文献

[1]
A Lightweight Hybrid Dilated Ghost Model-Based Approach for the Prognosis of Breast Cancer.

Comput Intell Neurosci. 2022-8-25

[2]
Artificial intelligence and machine learning for medical imaging: A technology review.

Phys Med. 2021-3

本文引用的文献

[1]
AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms.

Phys Med Biol. 2020-2-28

[2]
Learning from adversarial medical images for X-ray breast mass segmentation.

Comput Methods Programs Biomed. 2019-8-5

[3]
Attention gated networks: Learning to leverage salient regions in medical images.

Med Image Anal. 2019-2-5

[4]
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation.

J Healthc Eng. 2019-1-14

[5]
Cancer statistics, 2019.

CA Cancer J Clin. 2019-1-8

[6]
Mammographic mass segmentation using fuzzy contours.

Comput Methods Programs Biomed. 2018-7-18

[7]
SegAN: Adversarial Network with Multi-scale L Loss for Medical Image Segmentation.

Neuroinformatics. 2018-10

[8]
A curated mammography data set for use in computer-aided detection and diagnosis research.

Sci Data. 2017-12-19

[9]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[10]
Computer-aided diagnosis of mammographic masses using scalable image retrieval.

IEEE Trans Biomed Eng. 2015-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索