Wang Yuehang, Wang Shengsheng, Chen Juan, Wu Chun
Jilin University, College of Software, Changchun, China.
Jilin University, College of Computer Science and Technology, Changchun, China.
J Med Imaging (Bellingham). 2020 Sep;7(5):054503. doi: 10.1117/1.JMI.7.5.054503. Epub 2020 Oct 15.
Since breast mass is a clear sign of breast cancer, its precise segmentation is of great significance for the diagnosis of breast cancer. However, the current diagnosis relies mainly on radiologists who spend time extracting features manually, which inevitably reduces the efficiency of diagnosis. Therefore, designing an automatic segmentation method is urgently necessary for the accurate segmentation of breast masses. We propose an effective attention mechanism and multiscale pooling conditional generative adversarial network (AM-MSP-cGAN), which accurately achieves mass automatic segmentation in whole mammograms. In AM-MSP-cGAN, U-Net is utilized as a generator network by incorporating attention mechanism (AM) into it, which allows U-Net to pay more attention to the target mass regions without additional cost. As a discriminator network, a convolutional neural network with multiscale pooling module is used to learn more meticulous features from the masses with rough and fuzzy boundaries. The proposed model is trained and tested on two public datasets: CBIS-DDSM and INbreast. Compared with other state-of-the-art methods, the AM-MSP-cGAN can achieve better segmentation results in terms of the dice similarity coefficient (Dice) and Hausdorff distance metrics, achieving top scores of 84.49% and 5.01 on CBIS-DDSM, and 83.92% and 5.81 on INbreast, respectively. Therefore, qualitative and quantitative experiments illustrate that the proposed model is effective and robust for the mass segmentation in whole mammograms. The proposed deep learning model is suitable for the automatic segmentation of breast masses, which provides technical assistance for subsequent pathological structure analysis.
由于乳腺肿块是乳腺癌的一个明显迹象,其精确分割对于乳腺癌的诊断具有重要意义。然而,目前的诊断主要依赖于放射科医生手动提取特征,这不可避免地降低了诊断效率。因此,设计一种自动分割方法对于乳腺肿块的准确分割迫在眉睫。我们提出了一种有效的注意力机制和多尺度池化条件生成对抗网络(AM-MSP-cGAN),它能在全乳腺钼靶图像中准确实现肿块的自动分割。在AM-MSP-cGAN中,U-Net被用作生成器网络,并融入了注意力机制(AM),这使得U-Net能够在不增加额外成本的情况下更多地关注目标肿块区域。作为判别器网络,使用了带有多尺度池化模块的卷积神经网络,以便从边界粗糙和模糊的肿块中学习更细致的特征。所提出的模型在两个公共数据集CBIS-DDSM和INbreast上进行了训练和测试。与其他现有方法相比,AM-MSP-cGAN在骰子相似系数(Dice)和豪斯多夫距离度量方面能取得更好的分割结果,在CBIS-DDSM上分别达到了84.49%和5.01的最高分,在INbreast上分别达到了83.92%和5.81的最高分。因此,定性和定量实验表明,所提出的模型对于全乳腺钼靶图像中的肿块分割是有效且稳健的。所提出的深度学习模型适用于乳腺肿块的自动分割,为后续的病理结构分析提供了技术支持。
J Med Imaging (Bellingham). 2020-9
NPJ Breast Cancer. 2021-12-2
BMC Bioinformatics. 2020-12-9
Comput Methods Programs Biomed. 2021-3
Phys Med Biol. 2021-5-14
Comput Intell Neurosci. 2022-8-25
Comput Methods Programs Biomed. 2019-8-5
Med Image Anal. 2019-2-5
J Healthc Eng. 2019-1-14
CA Cancer J Clin. 2019-1-8
Comput Methods Programs Biomed. 2018-7-18
Neuroinformatics. 2018-10
IEEE Trans Pattern Anal Mach Intell. 2016-5-24
IEEE Trans Biomed Eng. 2015-2