Suppr超能文献

一种基于轻量级混合扩张式幽灵模型的乳腺癌预后方法

A Lightweight Hybrid Dilated Ghost Model-Based Approach for the Prognosis of Breast Cancer.

作者信息

Ramirez-Asis Edwin, Bolivar Romel Percy Melgarejo, Gonzales Leonid Alemán, Chaudhury Sushovan, Kashyap Ramgopal, Alsanie Walaa F, Viju G K

机构信息

Universidad Nacional Santiago Antunez de Mayolo, Huaraz, Peru.

Faculty of Statistical Engineering and Computer Science, Computer Science Research Institute, National University of the Altiplano of Puno, P.O. Box 291, Puno, Peru.

出版信息

Comput Intell Neurosci. 2022 Aug 25;2022:9325452. doi: 10.1155/2022/9325452. eCollection 2022.

Abstract

Most approaches use interactive priors to find tumours and then segment them based on tumour-centric candidates. A fully convolutional network is demonstrated for end-to-end breast tumour segmentation. When confronted with such a variety of options, to enhance tumour detection in digital mammograms, one uses multiscale picture information. . The sampling of convolution layers are carefully chosen without adding parameters to prevent overfitting. The loss function is tuned to the tumor pixel fraction during training. Several studies have shown that the recommended method is effective. Tumour segmentation is automated for a variety of tumour sizes and forms postprocessing. Due to an increase in malignant cases, fundamental IoT malignant detection and family categorisation methodologies have been put to the test. In this paper, a novel malignant detection and family categorisation model based on the improved stochastic channel attention of convolutional neural networks (CNNs) is presented. The lightweight deep learning model complies with tougher execution, training, and energy limits in practice. The improved stochastic channel attention and DenseNet models are employed to identify malignant cells, followed by family classification. On our datasets, the proposed model detects malignant cells with 99.3 percent accuracy and family categorisation with 98.5 percent accuracy. The model can detect and classify malignancy.

摘要

大多数方法使用交互式先验来查找肿瘤,然后基于以肿瘤为中心的候选区域对其进行分割。展示了一种用于端到端乳腺肿瘤分割的全卷积网络。面对如此多样的选择,为了增强数字乳腺X线摄影中的肿瘤检测,人们使用多尺度图像信息。卷积层的采样经过精心选择,无需添加参数以防止过拟合。在训练期间,损失函数根据肿瘤像素比例进行调整。多项研究表明,推荐的方法是有效的。对于各种肿瘤大小和形态的后处理,肿瘤分割是自动化的。由于恶性病例的增加,基本的物联网恶性检测和家族分类方法受到了考验。本文提出了一种基于改进的卷积神经网络(CNN)随机通道注意力的新型恶性检测和家族分类模型。这种轻量级深度学习模型在实际中符合更严格的执行、训练和能量限制。采用改进的随机通道注意力和DenseNet模型来识别恶性细胞,随后进行家族分类。在我们的数据集上,所提出的模型检测恶性细胞的准确率为99.3%,家族分类的准确率为98.5%。该模型可以检测和分类恶性肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f8/11390200/4f4cfc306aad/CIN2022-9325452.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验