Uyheng Joshua, Carley Kathleen M
CASOS Center, Institute for Software Research, Carnegie Mellon University, Pittsburgh, USA.
J Comput Soc Sci. 2020;3(2):445-468. doi: 10.1007/s42001-020-00087-4. Epub 2020 Oct 20.
Online hate speech represents a serious problem exacerbated by the ongoing COVID-19 pandemic. Although often anchored in real-world social divisions, hate speech in cyberspace may also be fueled inorganically by inauthentic actors like social bots. This work presents and employs a methodological pipeline for assessing the links between hate speech and bot-driven activity through the lens of social cybersecurity. Using a combination of machine learning and network science tools, we empirically characterize Twitter conversations about the pandemic in the United States and the Philippines. Our integrated analysis reveals idiosyncratic relationships between bots and hate speech across datasets, highlighting different network dynamics of racially charged toxicity in the US and political conflicts in the Philippines. Most crucially, we discover that bot activity is linked to higher hate in both countries, especially in communities which are denser and more isolated from others. We discuss several insights for probing issues of online hate speech and coordinated disinformation, especially through a global approach to computational social science.
网络仇恨言论是一个严重的问题,而持续的新冠疫情使这一问题更加恶化。尽管仇恨言论往往植根于现实世界的社会分歧,但网络空间中的仇恨言论也可能由社交机器人等虚假行为者非自然地煽动起来。这项工作提出并采用了一种方法流程,通过社会网络安全的视角来评估仇恨言论与机器人驱动活动之间的联系。我们结合使用机器学习和网络科学工具,对美国和菲律宾关于疫情的推特对话进行了实证分析。我们的综合分析揭示了不同数据集中机器人与仇恨言论之间的独特关系,突出了美国种族毒性言论和菲律宾政治冲突的不同网络动态。最关键的是,我们发现机器人活动与这两个国家中更多的仇恨言论相关联,尤其是在那些更密集且与其他群体隔离程度更高的社区。我们讨论了一些用于探究网络仇恨言论和协同虚假信息问题的见解,特别是通过一种全球计算社会科学的方法。