Suppr超能文献

通过辅助和培训提高社交机器人检测能力。

Improving Social Bot Detection Through Aid and Training.

机构信息

United States Army, Fayetteville, NC, USA.

Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Hum Factors. 2024 Oct;66(10):2323-2344. doi: 10.1177/00187208231210145. Epub 2023 Nov 14.

Abstract

OBJECTIVE

We test the effects of three aids on individuals' ability to detect social bots among Twitter personas: a bot indicator score, a training video, and a warning.

BACKGROUND

Detecting social bots can prevent online deception. We use a simulated social media task to evaluate three aids.

METHOD

Lay participants judged whether each of 60 Twitter personas was a human or social bot in a simulated online environment, using agreement between three machine learning algorithms to estimate the probability of each persona being a bot. Experiment 1 compared a control group and two intervention groups, one provided a bot indicator score for each tweet; the other provided a warning about social bots. Experiment 2 compared a control group and two intervention groups, one receiving the bot indicator scores and the other a training video, focused on heuristics for identifying social bots.

RESULTS

The bot indicator score intervention improved predictive performance and reduced overconfidence in both experiments. The training video was also effective, although somewhat less so. The warning had no effect. Participants rarely reported willingness to share content for a persona that they labeled as a bot, even when they agreed with it.

CONCLUSIONS

Informative interventions improved social bot detection; warning alone did not.

APPLICATION

We offer an experimental testbed and methodology that can be used to evaluate and refine interventions designed to reduce vulnerability to social bots. We show the value of two interventions that could be applied in many settings.

摘要

目的

我们测试了三种辅助手段对个体识别 Twitter 账号中社交机器人的能力的影响:机器人指标得分、培训视频和警告。

背景

检测社交机器人可以防止在线欺骗。我们使用模拟社交媒体任务来评估这三种辅助手段。

方法

非专业参与者在模拟的在线环境中判断 60 个 Twitter 账号中的每一个是人类还是社交机器人,使用三个机器学习算法之间的一致性来估计每个账号是机器人的概率。实验 1 比较了对照组和两个干预组,一组为每条推文提供机器人指标得分;另一组提供了关于社交机器人的警告。实验 2 比较了对照组和两个干预组,一组提供机器人指标得分,另一组提供了培训视频,重点是识别社交机器人的启发式方法。

结果

机器人指标得分干预在两个实验中都提高了预测性能和减少了过度自信。培训视频也很有效,尽管效果稍差一些。警告没有效果。参与者很少表示愿意分享他们标记为机器人的账号的内容,即使他们同意这个标记。

结论

提供信息的干预措施提高了社交机器人的检测能力;仅警告没有效果。

应用

我们提供了一个实验测试平台和方法,可以用来评估和改进旨在降低社交机器人易受攻击的干预措施。我们展示了两种干预措施的价值,这些措施可以在许多场景中应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ecf/11382440/b21cdcb3d1d8/10.1177_00187208231210145-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验