Suppr超能文献

非凡的外毛细胞:纪念 W. E. 布朗内尔研讨会论文集。

The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell.

机构信息

UCL Ear Institute, University College London, London, UK.

Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, USA.

出版信息

J Assoc Res Otolaryngol. 2023 Apr;24(2):117-127. doi: 10.1007/s10162-022-00852-4. Epub 2023 Jan 17.

Abstract

In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.

摘要

1985 年,比尔·布朗内尔(Bill Brownell)及其同事发表了一项引人注目的观察结果,指出耳蜗外毛细胞(OHC)表达电压驱动的机械运动:电致动。他们提出 OHC 电致动作为解释哺乳动物听力灵敏度所需的难以捉摸的“耳蜗放大器”的机制。这一发现和假设激发了大量实验,这些实验改变了我们对耳蜗力学和生理学、毛细胞结构和功能的进化以及听力学的理解。在这里,我们汇集了当前研究的例子,这些例子说明了 OHC 电致动的发现所产生的持续影响。

相似文献

1
The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell.
J Assoc Res Otolaryngol. 2023 Apr;24(2):117-127. doi: 10.1007/s10162-022-00852-4. Epub 2023 Jan 17.
2
Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier.
Nature. 2002 Sep 19;419(6904):300-4. doi: 10.1038/nature01059. Epub 2002 Aug 28.
3
Prestin and electromotility may serve multiple roles in cochlear outer hair cells.
Hear Res. 2022 Sep 15;423:108428. doi: 10.1016/j.heares.2021.108428. Epub 2021 Dec 26.
4
Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions.
PLoS One. 2009 Nov 20;4(11):e7923. doi: 10.1371/journal.pone.0007923.
5
A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification.
J Neurosci. 2022 Oct 19;42(42):7875-7884. doi: 10.1523/JNEUROSCI.2241-21.2022. Epub 2022 Sep 9.
7
Normal hearing sensitivity at low-to-middle frequencies with 34% prestin-charge density.
PLoS One. 2012;7(9):e45453. doi: 10.1371/journal.pone.0045453. Epub 2012 Sep 21.
10
How much prestin motor activity is required for normal hearing?
Hear Res. 2022 Sep 15;423:108376. doi: 10.1016/j.heares.2021.108376. Epub 2021 Nov 11.

引用本文的文献

1
The Reduced Cortilymph Flow Path in the Short-Wave Region Allows Outer Hair Cells to Produce Focused Traveling-Wave Amplification.
J Assoc Res Otolaryngol. 2025 Feb;26(1):49-61. doi: 10.1007/s10162-025-00976-3. Epub 2025 Feb 7.
2
Placode and neural crest origins of congenital deafness in mouse models of Waardenburg-Shah syndrome.
iScience. 2024 Dec 24;28(1):111680. doi: 10.1016/j.isci.2024.111680. eCollection 2025 Jan 17.
3
Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli.
J Assoc Res Otolaryngol. 2024 Apr;25(2):91-102. doi: 10.1007/s10162-024-00934-5. Epub 2024 Feb 26.
4
Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops.
Ear Hear. 2023;44(6):1437-1450. doi: 10.1097/AUD.0000000000001387. Epub 2023 Jul 14.
5
The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea.
J Assoc Res Otolaryngol. 2023 Apr;24(2):129-145. doi: 10.1007/s10162-022-00884-w. Epub 2023 Feb 1.

本文引用的文献

1
Single particle cryo-EM structure of the outer hair cell motor protein prestin.
Nat Commun. 2022 Jan 12;13(1):290. doi: 10.1038/s41467-021-27915-z.
2
The conformational cycle of prestin underlies outer-hair cell electromotility.
Nature. 2021 Dec;600(7889):553-558. doi: 10.1038/s41586-021-04152-4. Epub 2021 Oct 25.
4
Molecular mechanism of prestin electromotive signal amplification.
Cell. 2021 Sep 2;184(18):4669-4679.e13. doi: 10.1016/j.cell.2021.07.034. Epub 2021 Aug 13.
5
Nonlinear cochlear mechanics without direct vibration-amplification feedback.
Phys Rev Res. 2020 Feb-Apr;2(1). doi: 10.1103/physrevresearch.2.013218. Epub 2020 Feb 26.
6
The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing.
Sci Rep. 2020 Nov 25;10(1):20528. doi: 10.1038/s41598-020-77042-w.
7
Cochlear mechanics: new insights from vibrometry and Optical Coherence Tomography.
Curr Opin Physiol. 2020 Dec;18:56-62. doi: 10.1016/j.cophys.2020.08.022. Epub 2020 Sep 5.
8
Manipulation of the Endocochlear Potential Reveals Two Distinct Types of Cochlear Nonlinearity.
Biophys J. 2020 Nov 17;119(10):2087-2101. doi: 10.1016/j.bpj.2020.10.005. Epub 2020 Oct 20.
9
The cochlear outer hair cell speed paradox.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):21880-21888. doi: 10.1073/pnas.2003838117. Epub 2020 Aug 26.
10
Complex nonlinear capacitance in outer hair cell macro-patches: effects of membrane tension.
Sci Rep. 2020 Apr 10;10(1):6222. doi: 10.1038/s41598-020-63201-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验