Suppr超能文献

电场作用下分子金-水-金结的电导与构型

Conductance and configuration of molecular gold-water-gold junctions under electric fields.

作者信息

Xiang Limin, Zhang Peng, Liu Chaoren, He Xin, Li Haipeng B, Li Yueqi, Wang Zixiao, Hihath Joshua, Kim Seong H, Beratan David N, Tao Nongjian

机构信息

Biodesign Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.

Lead contact.

出版信息

Matter. 2020 Jul 1;3(1):166-179. doi: 10.1016/j.matt.2020.03.023. Epub 2020 Apr 20.

Abstract

Water molecules can mediate charge transfer in biological and chemical reactions by forming electronic coupling pathways. Understanding the mechanism requires a molecular-level electrical characterization of water. Here, we describe the measurement of single water molecular conductance at room temperature, characterize the structure of water molecules using infrared spectroscopy, and perform theoretical studies to assist in the interpretation of the experimental data. The study reveals two distinct states of water, corresponding to a parallel and perpendicular orientation of the molecules. Water molecules switch from parallel to perpendicular orientations on applying an electric field, producing switching from high to low conductance states, thus enabling the determination of single water molecular dipole moments. The work further shows that water-water interactions affect the atomic scale configuration and conductance of water molecules. These findings demonstrate the importance of the discrete nature of water molecules in electron transfer and set limits on water-mediated electron transfer rates.

摘要

水分子可以通过形成电子耦合路径来介导生物和化学反应中的电荷转移。理解这一机制需要对水进行分子水平的电学表征。在此,我们描述了室温下单水分子电导的测量,利用红外光谱表征水分子的结构,并进行理论研究以辅助解释实验数据。该研究揭示了水的两种不同状态,对应于分子的平行和垂直取向。施加电场时,水分子从平行取向转变为垂直取向,导致电导状态从高到低切换,从而能够确定单水分子偶极矩。这项工作进一步表明,水 - 水相互作用会影响水分子的原子尺度构型和电导。这些发现证明了水分子的离散性质在电子转移中的重要性,并为水介导的电子转移速率设定了限制。

相似文献

1
Conductance and configuration of molecular gold-water-gold junctions under electric fields.
Matter. 2020 Jul 1;3(1):166-179. doi: 10.1016/j.matt.2020.03.023. Epub 2020 Apr 20.
2
Conformational switching of CO on graphene: the role of electric fields.
J Mol Model. 2019 Nov 13;25(12):343. doi: 10.1007/s00894-019-4242-x.
3
Light-Induced Switching of Tunable Single-Molecule Junctions.
Adv Sci (Weinh). 2015 Apr 16;2(5):1500017. doi: 10.1002/advs.201500017. eCollection 2015 May.
4
Mechanically controlled binary conductance switching of a single-molecule junction.
Nat Nanotechnol. 2009 Apr;4(4):230-4. doi: 10.1038/nnano.2009.10. Epub 2009 Mar 1.
6
Cavity-modified molecular dipole switching dynamics.
J Chem Phys. 2024 Mar 7;160(9). doi: 10.1063/5.0188471.
7
Single Molecule Nanoelectrochemistry in Electrical Junctions.
Acc Chem Res. 2016 Nov 15;49(11):2640-2648. doi: 10.1021/acs.accounts.6b00373. Epub 2016 Oct 7.
8
Electric field-induced switching among multiple conductance pathways in single-molecule junctions.
Chem Commun (Camb). 2021 Jul 20;57(58):7160-7163. doi: 10.1039/d1cc02111g.
9
Electron transport and redox reactions in carbon-based molecular electronic junctions.
Phys Chem Chem Phys. 2006 Jun 14;8(22):2572-90. doi: 10.1039/b601163m. Epub 2006 May 4.
10
Single-molecule field effect and conductance switching driven by electric field and proton transfer.
Sci Adv. 2022 Mar 25;8(12):eabm3541. doi: 10.1126/sciadv.abm3541. Epub 2022 Mar 23.

引用本文的文献

1
Resolving Nanoslip, Solvation Inertia, and Charge Dynamics at Vibrating Solid-Liquid Interface.
Small. 2025 Sep;21(35):e2505067. doi: 10.1002/smll.202505067. Epub 2025 Jul 31.
2
Toward Practical Single-Molecule/Atom Switches.
Adv Sci (Weinh). 2024 Aug;11(29):e2400877. doi: 10.1002/advs.202400877. Epub 2024 May 29.
3
Charge transport in individual short base stacked single-stranded RNA molecules.
Sci Rep. 2023 Nov 13;13(1):19858. doi: 10.1038/s41598-023-46263-0.
4
A van der Waals heterojunction strategy to fabricate layer-by-layer single-molecule switch.
Sci Adv. 2023 Feb 10;9(6):eadf0425. doi: 10.1126/sciadv.adf0425. Epub 2023 Feb 8.
5
Polarized Water Driven Dynamic PN Junction-Based Direct-Current Generator.
Research (Wash D C). 2021 Jan 24;2021:7505638. doi: 10.34133/2021/7505638. eCollection 2021.

本文引用的文献

1
Fluctuating hydrogen-bond networks govern anomalous electron transfer kinetics in a blue copper protein.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6129-6134. doi: 10.1073/pnas.1805719115. Epub 2018 May 29.
2
Water Adsorption by a Sensitive Calibrated Gold Plasmonic Nanosensor.
Langmuir. 2018 May 15;34(19):5381-5385. doi: 10.1021/acs.langmuir.8b00040. Epub 2018 May 4.
3
Bias-dependent local structure of water molecules at a metallic interface.
Chem Sci. 2017 Oct 11;9(1):62-69. doi: 10.1039/c7sc02208e. eCollection 2018 Jan 7.
4
Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.
Phys Chem Chem Phys. 2017 Feb 8;19(6):4673-4677. doi: 10.1039/c6cp07549e.
5
Water at Interfaces.
Chem Rev. 2016 Jul 13;116(13):7698-726. doi: 10.1021/acs.chemrev.6b00045. Epub 2016 May 27.
6
Electrical conductance and structure of copper atomic junctions in the presence of water molecules.
Phys Chem Chem Phys. 2015 Dec 28;17(48):32436-42. doi: 10.1039/c5cp05227k.
7
How Does Water Wet a Surface?
Acc Chem Res. 2015 Oct 20;48(10):2783-90. doi: 10.1021/acs.accounts.5b00214. Epub 2015 Sep 29.
8
Square ice in graphene nanocapillaries.
Nature. 2015 Mar 26;519(7544):443-5. doi: 10.1038/nature14295.
9
Interfacial water. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy.
Science. 2014 Nov 14;346(6211):831-4. doi: 10.1126/science.1259437. Epub 2014 Oct 23.
10
An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters.
Science. 2014 Feb 14;343(6172):795-8. doi: 10.1126/science.1247407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验