Suppr超能文献

利用蛋白质-蛋白质相互作用网络计算识别人类生物过程和可能被 SARS-CoV-2 蛋白靶向的蛋白质序列基序。

Computational Identification of Human Biological Processes and Protein Sequence Motifs Putatively Targeted by SARS-CoV-2 Proteins Using Protein-Protein Interaction Networks.

机构信息

Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.

Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.

出版信息

J Proteome Res. 2020 Nov 6;19(11):4553-4566. doi: 10.1021/acs.jproteome.0c00422. Epub 2020 Oct 26.

Abstract

While the COVID-19 pandemic is causing important loss of life, knowledge of the effects of the causative SARS-CoV-2 virus on human cells is currently limited. Investigating protein-protein interactions (PPIs) between viral and host proteins can provide a better understanding of the mechanisms exploited by the virus and enable the identification of potential drug targets. We therefore performed an in-depth computational analysis of the interactome of SARS-CoV-2 and human proteins in infected HEK 293 cells published by Gordon et al. (, , 459-468) to reveal processes that are potentially affected by the virus and putative protein binding sites. Specifically, we performed a set of network-based functional and sequence motif enrichment analyses on SARS-CoV-2-interacting human proteins and on PPI networks generated by supplementing viral-host PPIs with known interactions. Using a novel implementation of our GoNet algorithm, we identified 329 Gene Ontology terms for which the SARS-CoV-2-interacting human proteins are significantly clustered in PPI networks. Furthermore, we present a novel protein sequence motif discovery approach, LESMoN-Pro, that identified 9 amino acid motifs for which the associated proteins are clustered in PPI networks. Together, these results provide insights into the processes and sequence motifs that are putatively implicated in SARS-CoV-2 infection and could lead to potential therapeutic targets.

摘要

虽然 COVID-19 大流行造成了重要的生命损失,但目前对致病 SARS-CoV-2 病毒对人体细胞的影响知之甚少。研究病毒和宿主蛋白之间的蛋白质-蛋白质相互作用 (PPI) 可以更好地了解病毒利用的机制,并能够识别潜在的药物靶点。因此,我们对 Gordon 等人发表的感染 HEK 293 细胞的 SARS-CoV-2 和人类蛋白质相互作用组进行了深入的计算分析(,,459-468),以揭示可能受到病毒和潜在蛋白结合位点影响的过程。具体来说,我们对 SARS-CoV-2 相互作用的人类蛋白和通过补充已知相互作用的病毒-宿主 PPIs 生成的 PPI 网络,进行了一系列基于网络的功能和序列基序富集分析。使用我们的 GoNet 算法的新实现,我们确定了 329 个基因本体论术语,其中 SARS-CoV-2 相互作用的人类蛋白在 PPI 网络中显著聚类。此外,我们提出了一种新的蛋白质序列基序发现方法 LESMoN-Pro,该方法确定了 9 个氨基酸基序,其相关蛋白在 PPI 网络中聚类。这些结果共同提供了对 SARS-CoV-2 感染中可能涉及的过程和序列基序的深入了解,并可能导致潜在的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验