Suppr超能文献

通用模型揭示病毒感染的更深层次见解:进化图着色在计算网络生物学中的实证应用。

Generic model to unravel the deeper insights of viral infections: an empirical application of evolutionary graph coloring in computational network biology.

机构信息

Department of Computer Application, The Heritage Academy, Kolkata, W.B., 700107, India.

Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.

出版信息

BMC Bioinformatics. 2024 Feb 16;25(1):74. doi: 10.1186/s12859-024-05690-0.

Abstract

PURPOSE

Graph coloring approach has emerged as a valuable problem-solving tool for both theoretical and practical aspects across various scientific disciplines, including biology. In this study, we demonstrate the graph coloring's effectiveness in computational network biology, more precisely in analyzing protein-protein interaction (PPI) networks to gain insights about the viral infections and its consequences on human health. Accordingly, we propose a generic model that can highlight important hub proteins of virus-associated disease manifestations, changes in disease-associated biological pathways, potential drug targets and respective drugs. We test our model on SARS-CoV-2 infection, a highly transmissible virus responsible for the COVID-19 pandemic. The pandemic took significant human lives, causing severe respiratory illnesses and exhibiting various symptoms ranging from fever and cough to gastrointestinal, cardiac, renal, neurological, and other manifestations.

METHODS

To investigate the underlying mechanisms of SARS-CoV-2 infection-induced dysregulation of human pathobiology, we construct a two-level PPI network and employed a differential evolution-based graph coloring (DEGCP) algorithm to identify critical hub proteins that might serve as potential targets for resolving the associated issues. Initially, we concentrate on the direct human interactors of SARS-CoV-2 proteins to construct the first-level PPI network and subsequently applied the DEGCP algorithm to identify essential hub proteins within this network. We then build a second-level PPI network by incorporating the next-level human interactors of the first-level hub proteins and use the DEGCP algorithm to predict the second level of hub proteins.

RESULTS

We first identify the potential crucial hub proteins associated with SARS-CoV-2 infection at different levels. Through comprehensive analysis, we then investigate the cellular localization, interactions with other viral families, involvement in biological pathways and processes, functional attributes, gene regulation capabilities as transcription factors, and their associations with disease-associated symptoms of these identified hub proteins. Our findings highlight the significance of these hub proteins and their intricate connections with disease pathophysiology. Furthermore, we predict potential drug targets among the hub proteins and identify specific drugs that hold promise in preventing or treating SARS-CoV-2 infection and its consequences.

CONCLUSION

Our generic model demonstrates the effectiveness of DEGCP algorithm in analyzing biological PPI networks, provides valuable insights into disease biology, and offers a basis for developing novel therapeutic strategies for other viral infections that may cause future pandemic.

摘要

目的

图着色方法已成为解决各种科学领域(包括生物学)理论和实践问题的有价值的工具。在这项研究中,我们展示了图着色在计算网络生物学中的有效性,更具体地说,是在分析蛋白质-蛋白质相互作用(PPI)网络以了解病毒感染及其对人类健康的影响方面。因此,我们提出了一个通用模型,可以突出病毒相关疾病表现、疾病相关生物途径变化、潜在药物靶点和相应药物的重要枢纽蛋白。我们在 SARS-CoV-2 感染上测试了我们的模型,SARS-CoV-2 是一种高度传染性的病毒,导致了 COVID-19 大流行。这场大流行夺走了大量人的生命,导致严重的呼吸道疾病,并表现出从发热和咳嗽到胃肠道、心脏、肾脏、神经和其他表现等各种症状。

方法

为了研究 SARS-CoV-2 感染引起的人类病理生理学失调的潜在机制,我们构建了一个两级 PPI 网络,并采用基于差异进化的图着色(DEGCP)算法来识别可能作为解决相关问题的潜在靶点的关键枢纽蛋白。首先,我们专注于 SARS-CoV-2 蛋白的直接人类相互作用者,构建第一级 PPI 网络,然后应用 DEGCP 算法在该网络中识别关键枢纽蛋白。然后,我们通过纳入第一级枢纽蛋白的下一级人类相互作用者来构建第二级 PPI 网络,并使用 DEGCP 算法预测第二级枢纽蛋白。

结果

我们首先确定了与 SARS-CoV-2 感染不同水平相关的潜在关键枢纽蛋白。通过综合分析,我们进一步研究了这些鉴定出的枢纽蛋白的细胞定位、与其他病毒家族的相互作用、参与生物途径和过程、功能属性、作为转录因子的基因调控能力以及与这些枢纽蛋白相关的疾病相关症状的关联。我们的研究结果强调了这些枢纽蛋白的重要性以及它们与疾病病理生理学的复杂联系。此外,我们预测了枢纽蛋白中的潜在药物靶点,并确定了一些具有预防或治疗 SARS-CoV-2 感染及其后果潜力的特定药物。

结论

我们的通用模型展示了 DEGCP 算法在分析生物 PPI 网络方面的有效性,为疾病生物学提供了有价值的见解,并为开发针对可能导致未来大流行的其他病毒感染的新型治疗策略提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/581c/10874019/13094e7dbd4f/12859_2024_5690_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验