Suppr超能文献

基于改进的模糊灰狼优化算法预测 COVID-19 感染的潜在宿主受体。

An improved Fuzzy based GWO algorithm for predicting the potential host receptor of COVID-19 infection.

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Mizoram, Aizwal, 796001, Mizoram, India.

Department of Computer Science and Engineering, National Institute of Technology, Silchar, Silchar, 788003, Assam, India.

出版信息

Comput Biol Med. 2022 Dec;151(Pt A):106050. doi: 10.1016/j.compbiomed.2022.106050. Epub 2022 Aug 25.

Abstract

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has infected millions worldwide. SARS-CoV-2 spike protein uses Angiotensin-converting enzyme 2 (ACE2) and Transmembrane serine protease 2 (TMPRSS2) for entering and fusing the host cell membrane. However, interaction with spike protein receptors and protease processing are not the only factors determining coronaviruses' entry. Several proteases mediate the entry of SARS-CoV-2 virus into the host cell. Identifying receptor factors helps understand tropism, transmission, and pathogenesis of COVID-19 infection in humans. The paper aims to identify novel viral receptor or membrane proteins that are transcriptionally and biologically similar to ACE2 and TMPRSS2 through a fuzzy clustering technique that employs the Grey wolf optimizer (GWO) algorithm for finding the optimal cluster center. The exploratory and exploitation capability of GWO algorithm is improved by hybridizing mutation and crossover operators of the evolutionary algorithm. Also, the genetic diversity of the grey wolf population is enhanced by eliminating weak individuals from the population. The proposed clustering algorithm's effectiveness is shown by detecting novel viral receptors and membrane proteins associated with the pathogenesis of SARS-CoV-2 infection. The expression profiles of ACE2 protein and its co-receptor factor are analyzed and compared with single-cell transcriptomics profiling using the Seurat R toolkit, mass spectrometry (MS), and immunohistochemistry (IHC). Our advanced clustering method infers that cell that expresses high ACE2 level are more affected by SARS-CoV-infection. So, SARS-CoV-2 virus affects lung, intestine, testis, heart, kidney, and liver more severely than brain, bone marrow, skin, spleen, etc. We have identified 58 novel viral receptors and 816 membrane proteins, and their role in the pathogenicity mechanism of SARS-CoV-2 infection has been studied. Besides, our study confirmed that Neuropilins (NRP1), G protein-coupled receptor 78 (GPR78), C-type lectin domain family 4 member M (CLEC4M), Kringle containing transmembrane protein 1 (KREMEN1), Asialoglycoprotein receptor 1 (ASGR1), A Disintegrin and metalloprotease 17 (ADAM17), Furin, Neuregulin-1,(NRG1), Basigin or CD147 and Poliovirus receptor (PVR) are the potential co-receptors of SARS-CoV-2 virus. A significant finding is that heparin derivative glycosaminoglycans could block the replication of SARS-CoV-2 virus inside the host cytoplasm. The membrane protein N-Deacetylase/N-Sulfotransferase-2 (NDST2), Extostosin protein (EXT1, EXT2, and EXT3), Glucuronic acid epimerase (GLCE), and Xylosyltransferase I, II (XYLT1, XYLT2) could act as the therapeutic target for inhibiting the spread of SARS-CoV-2 infection. Drugs such as carboplatin and gemcitabine are effective in such situations.

摘要

新型冠状病毒病(COVID-19)是由严重急性呼吸系统综合征冠状病毒 2 型(SARS-CoV-2)引起的,已在全球范围内感染数百万人。SARS-CoV-2 刺突蛋白利用血管紧张素转换酶 2(ACE2)和跨膜丝氨酸蛋白酶 2(TMPRSS2)进入并融合宿主细胞膜。然而,与刺突蛋白受体的相互作用和蛋白酶的加工并不是决定冠状病毒进入的唯一因素。几种蛋白酶介导 SARS-CoV-2 病毒进入宿主细胞。鉴定受体因子有助于了解 COVID-19 感染在人类中的嗜性、传播和发病机制。本文旨在通过模糊聚类技术,利用灰狼优化(GWO)算法寻找最优聚类中心,鉴定新型病毒受体或与 ACE2 和 TMPRSS2 在转录和生物学上相似的膜蛋白。通过混合进化算法的突变和交叉算子,提高了 GWO 算法的探索和利用能力。同时,通过从种群中消除弱势个体来增强灰狼种群的遗传多样性。通过检测与 SARS-CoV-2 感染发病机制相关的新型病毒受体和膜蛋白,证明了所提出的聚类算法的有效性。使用 Seurat R 工具包、质谱(MS)和免疫组织化学(IHC)分析 ACE2 蛋白及其共受体因子的表达谱,并与单细胞转录组学分析进行比较。我们的高级聚类方法推断出表达高水平 ACE2 的细胞更容易受到 SARS-CoV 感染的影响。因此,SARS-CoV-2 病毒对肺、肠、睾丸、心脏、肾脏和肝脏的影响比脑、骨髓、皮肤、脾脏等更为严重。我们已经鉴定了 58 种新型病毒受体和 816 种膜蛋白,并研究了它们在 SARS-CoV-2 感染发病机制中的作用。此外,我们的研究证实,神经纤毛蛋白 1(NRP1)、G 蛋白偶联受体 78(GPR78)、C 型凝集素结构域家族 4 成员 M(CLEC4M)、含 Krüppel 样结构域跨膜蛋白 1(KREMEN1)、唾液酸糖蛋白受体 1(ASGR1)、解整合素金属蛋白酶 17(ADAM17)、弗林蛋白酶、神经调节蛋白 1(NRG1)、Basigin 或 CD147 和脊髓灰质炎病毒受体(PVR)是 SARS-CoV-2 病毒的潜在共受体。一个重要的发现是肝素衍生物糖胺聚糖可以阻止 SARS-CoV-2 病毒在宿主细胞质内的复制。膜蛋白 N-去乙酰化酶/N-磺基转移酶 2(NDST2)、外切素蛋白(EXT1、EXT2 和 EXT3)、葡萄糖醛酸差向异构酶(GLCE)和木糖基转移酶 I、II(XYLT1、XYLT2)可以作为抑制 SARS-CoV-2 感染传播的治疗靶点。在这种情况下,卡铂和吉西他滨等药物是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fce/9404081/2fbe844004e7/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验