Wang Gaofeng, Graham Elizabeth, Zheng Shuilin, Zhu Jianxi, Zhu Runliang, He Hongping, Sun Zhiming, Mackinnon Ian D R, Xi Yunfei
Institute for Future Environments and Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia.
CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research and Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
Materials (Basel). 2020 Oct 22;13(21):4700. doi: 10.3390/ma13214700.
Distinctive Cr-MOF@Da composites have been constructed using chromium-based metal-organic frameworks (MOFs) and diatomite (Da). The new materials have hierarchical pore structures containing micropores, mesopores and macropores. We have synthesized various morphologies of the MOF compound Cr-MIL-101 to combine with Da in a one-pot reaction step. These distinctive hierarchical pore networks within Cr-MIL-101@Da enable exceptional adsorptive performance for a range of molecules, including hydrogen (H), carbon dioxide (CO) and water (HO) vapor. Selectivity for H or CO can be moderated by the morphology and composition of the Cr-MIL-101 included in the Cr-MOF@Da composite. The encapsulation and growth of Cr-MIL-101 within and on Da have resulted in excellent water retention as well as high thermal and hydrolytic stability. In some cases, Cr-MIL-101@Da composite materials have demonstrated increased thermal stability compared with that of Cr-MIL-101; for example, decomposition temperatures >340 ℃ can be achieved. Furthermore, these Cr-MIL-101@Da composites retain structural and morphological integrity after 60 cycles of repeated hydration/dehydration, and after storage for more than one year. These characteristics are difficult to achieve with many MOF materials, and thus suggest that MOF-mineral composites show high potential for practical gas storage and water vapor capture.
已使用基于铬的金属有机框架(MOF)和硅藻土(Da)构建了独特的Cr-MOF@Da复合材料。这些新材料具有包含微孔、中孔和大孔的分级孔结构。我们在一锅反应步骤中合成了各种形态的MOF化合物Cr-MIL-101,使其与Da结合。Cr-MIL-101@Da内这些独特的分级孔网络对包括氢气(H₂)、二氧化碳(CO₂)和水蒸气(H₂O)在内的一系列分子具有出色的吸附性能。对H₂或CO₂的选择性可通过Cr-MOF@Da复合材料中所含Cr-MIL-101的形态和组成来调节。Cr-MIL-101在Da内部和表面的包封与生长导致了优异的保水性以及高热稳定性和水解稳定性。在某些情况下,Cr-MIL-101@Da复合材料与Cr-MIL-101相比表现出更高的热稳定性;例如,可以达到>340℃的分解温度。此外,这些Cr-MIL-101@Da复合材料在60次重复水合/脱水循环以及储存一年多后仍保持结构和形态完整性。许多MOF材料难以实现这些特性,因此表明MOF-矿物复合材料在实际气体存储和水蒸气捕获方面具有很高的潜力。