Suppr超能文献

背景压力对通过相对论强激光-等离子体相互作用加速的兆电子伏特质子的影响。

Background pressure effects on MeV protons accelerated via relativistically intense laser-plasma interactions.

作者信息

Snyder Joseph, Morrison John, Feister Scott, Frische Kyle, George Kevin, Le Manh, Orban Christopher, Ngirmang Gregory, Chowdhury Enam, Roquemore William

机构信息

Department of Mathematical and Physical Sciences, Miami University, Hamilton, OH, 45011, USA.

Innovative Scientific Solutions, Inc., Dayton, OH, 45459, USA.

出版信息

Sci Rep. 2020 Oct 26;10(1):18245. doi: 10.1038/s41598-020-75061-1.

Abstract

We present how chamber background pressure affects energetic proton acceleration from an ultra-intense laser incident on a thin liquid target. A high-repetition-rate (100 Hz), 3.5 mJ laser with peak intensity of [Formula: see text] impinged on a 450 nm sheet of flowing liquid ethylene glycol. For these parameters, we experimentally demonstrate a threshold in laser-to-proton conversion efficiency at background pressures [Formula: see text], wherein the overall energy in ions [Formula: see text] increases by an order of magnitude. Proton acceleration becomes increasingly efficient at lower background pressures and laser-to-proton conversion efficiency approaches a constant as the vacuum pressure decreases. We present two-dimensional particle-in-cell simulations and a charge neutralization model to support our experimental findings. Our experiment demonstrates that high vacuum is not required for energetic ion acceleration, which relaxes target debris requirements and facilitates applications of high-repetition rate laser-based proton accelerators.

摘要

我们展示了腔室背景压力如何影响超强激光入射到薄液体靶上时的高能质子加速。一台高重复频率(100Hz)、3.5mJ、峰值强度为[公式:见正文]的激光照射到一片450nm厚的流动液态乙二醇上。对于这些参数,我们通过实验证明了在背景压力[公式:见正文]下激光到质子转换效率存在一个阈值,其中离子中的总能量[公式:见正文]增加了一个数量级。在较低的背景压力下,质子加速变得越来越高效,并且随着真空压力降低,激光到质子的转换效率趋近于一个常数。我们展示了二维粒子模拟和电荷中和模型来支持我们的实验结果。我们的实验表明,高能离子加速不需要高真空,这放宽了对靶碎片的要求,并促进了基于高重复频率激光的质子加速器的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a269/7588495/6bc6239264cd/41598_2020_75061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验