Waeytens Jehan, Mathurin Jérémie, Deniset-Besseau Ariane, Arluison Véronique, Bousset Luc, Rezaei Human, Raussens Vincent, Dazzi Alexandre
Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgique.
Analyst. 2021 Jan 4;146(1):132-145. doi: 10.1039/d0an01545h.
Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillary structure with a higher β-sheet content than their native structure. Attenuated total reflection Fourier transform infrared spectroscopy only provides bulk analysis of a sample therefore it is impossible to discriminate between different aggregated structures. To overcome this limitation, near-field techniques like AFM-IR have emerged in the last twenty years to allow infrared nanospectroscopy. This technique obtains IR spectra with a spatial resolution of ten nanometres, the size of isolated fibrils. Here, we present essential practical considerations to avoid misinterpretations and artefacts during these analyses. Effects of polarization of the incident IR laser, illumination configuration and coating of the AFM probes are discussed, including the advantages and drawbacks of their use. This approach will improve interpretation of AFM-IR spectra especially for the determination of secondary structures of species not accessible using classical ATR-FTIR.
淀粉样纤维由聚集的肽或蛋白质组成,呈纤维状结构,其β-折叠含量高于天然结构。衰减全反射傅里叶变换红外光谱仅能对样品进行整体分析,因此无法区分不同的聚集结构。为克服这一局限性,近场技术如原子力显微镜红外光谱(AFM-IR)在过去二十年中应运而生,实现了红外纳米光谱分析。该技术可获得空间分辨率为十纳米(即孤立纤维大小)的红外光谱。在此,我们提出了一些重要的实际注意事项,以避免在这些分析过程中出现误解和假象。讨论了入射红外激光的偏振、照明配置和原子力显微镜探针涂层的影响,包括其使用的优缺点。这种方法将改进对AFM-IR光谱的解释,特别是对于确定使用经典衰减全反射傅里叶变换红外光谱(ATR-FTIR)无法获得的物种二级结构。