Han Meikang, Maleski Kathleen, Shuck Christopher Eugene, Yang Yizhou, Glazar James T, Foucher Alexandre C, Hantanasirisakul Kanit, Sarycheva Asia, Frey Nathan C, May Steven J, Shenoy Vivek B, Stach Eric A, Gogotsi Yury
A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
J Am Chem Soc. 2020 Nov 11;142(45):19110-19118. doi: 10.1021/jacs.0c07395. Epub 2020 Oct 27.
Alloying is a long-established strategy to tailor properties of metals for specific applications, thus retaining or enhancing the principal elemental characteristics while offering additional functionality from the added elements. We propose a similar approach to the control of properties of two-dimensional transition metal carbides known as MXenes. MXenes (MX) have two sites for compositional variation: elemental substitution on both the metal (M) and carbon/nitrogen (X) sites presents promising routes for tailoring the chemical, optical, electronic, or mechanical properties of MXenes. Herein, we systematically investigated three interrelated binary solid-solution MXene systems based on Ti, Nb, and/or V at the M-site in a MXT structure (TiNbCT, TiVCT, and VNbCT, where T stands for surface terminations) showing the evolution of electronic and optical properties as a function of composition. All three MXene systems show unlimited solubility and random distribution of metal elements in the metal sublattice. Optically, the MXene systems are tailorable in a nonlinear fashion, with absorption peaks from ultraviolet to near-infrared wavelength. The macroscopic electrical conductivity of solid solution MXenes can be controllably varied over 3 orders of magnitude at room temperature and 6 orders of magnitude from 10 to 300 K. This work greatly increases the number of nonstoichiometric MXenes reported to date and opens avenues for controlling physical properties of different MXenes with a limitless number of compositions possible through M-site solid solutions.
合金化是一种长期以来用于为特定应用定制金属性能的策略,它在保留或增强主要元素特性的同时,还能从添加的元素中获得额外功能。我们提出了一种类似的方法来控制二维过渡金属碳化物(即MXenes)的性能。MXenes(MX)有两个成分可变位点:金属(M)和碳/氮(X)位点上的元素取代为定制MXenes的化学、光学、电子或机械性能提供了有前景的途径。在此,我们系统地研究了基于MXT结构(TiNbCT、TiVCT和VNbCT,其中T代表表面端基)中M位点上的Ti、Nb和/或V的三个相互关联的二元固溶体MXene体系,展示了电子和光学性能随成分的变化。所有这三个MXene体系在金属亚晶格中均表现出无限互溶性和金属元素的随机分布。在光学方面,MXene体系可以以非线性方式进行定制,其吸收峰从紫外到近红外波长。固溶体MXenes的宏观电导率在室温下可控制地变化超过3个数量级,在10至300 K范围内可变化6个数量级。这项工作极大地增加了迄今为止报道的非化学计量MXenes的数量,并为通过M位点固溶体控制不同MXenes的物理性能开辟了途径,从而可能产生无限数量的组成。