Suppr超能文献

通过使用磷灰石核赋予壳聚糖纳米纤维形成磷灰石的能力。

Impartation of apatite-forming ability to chitosan nanofibres by using apatite nuclei.

机构信息

Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

IET Nanobiotechnol. 2020 Oct;14(8):668-672. doi: 10.1049/iet-nbt.2020.0052.

Abstract

Chitosan nanofibre-apatite nuclei composites obtained by mixing apatite nuclei which possess high apatite-forming ability with chitosan nanofibre have been expected to be novel bone restorative materials with suitable properties such as light weight, low coefficient of thermal expansion, high mechanical strength, biocompatibility and bioactivity. In this study, the authors prepared three types of apatite nuclei by changing the reaction time aimed to optimise their crystallinity and fabricated their composites with chitosan nanofibre. In order to evaluate the bioactivity in vitro, the authors tested apatite-forming ability in simulated body fluid. As a result, the materials showed enough apatite-forming ability in a short time by mixing chitosan nanofibre and apatite nuclei with extremely low crystallinity and their high reactivity in simulated body fluid.

摘要

壳聚糖纳米纤维-磷灰石核复合材料是通过将具有高磷灰石形成能力的磷灰石核与壳聚糖纳米纤维混合而获得的,有望成为具有合适性能的新型骨修复材料,如重量轻、热膨胀系数低、机械强度高、生物相容性和生物活性。在这项研究中,作者通过改变反应时间来制备三种类型的磷灰石核,旨在优化其结晶度,并将其与壳聚糖纳米纤维制成复合材料。为了评估体外的生物活性,作者在模拟体液中测试了磷灰石的形成能力。结果表明,通过混合壳聚糖纳米纤维和结晶度极低的磷灰石核,以及在模拟体液中的高反应性,这些材料在短时间内显示出足够的磷灰石形成能力。

相似文献

本文引用的文献

4
Craniotomy repair with titanium miniplates.使用微型钛板进行开颅修复术。
J Clin Neurosci. 1998 Jan;5(1):81-6. doi: 10.1016/s0967-5868(98)90209-0.
8
How useful is SBF in predicting in vivo bone bioactivity?SBF在预测体内骨生物活性方面有多有用?
Biomaterials. 2006 May;27(15):2907-15. doi: 10.1016/j.biomaterials.2006.01.017. Epub 2006 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验