Suppr超能文献

Phenol-promoted structural transformation of insulin in solution.

作者信息

Wollmer A, Rannefeld B, Johansen B R, Hejnaes K R, Balschmidt P, Hansen F B

机构信息

Abteilung Physiologische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen.

出版信息

Biol Chem Hoppe Seyler. 1987 Aug;368(8):903-11. doi: 10.1515/bchm3.1987.368.2.903.

Abstract

Phenolic additives widely used for the preservation of insulin preparations can have a profound effect on the hormone's conformation in solution. m-Cresol, for instance, increases the circular dichroism in the far ultraviolet by 10-20%, corresponding to an increase in helix, and around 255 nm. The CD-spectral changes are strikingly similar to those brought about by halide ions which have been identified to reflect the 2 Zn----4 Zn insulin transition. Its most prominent element is the helix formation at the B-chain N-terminus. In both cases the changes fail to occur with dimeric insulin in the absence of Zn2 and with monomeric des-(B26-B30)-insulin. In the presence of Ni2 which is unable to replace Zn2 in 4 Zn insulin for coordinative reasons, the effect of m-cresol is impeded. m-Cresol thus induces a transition identical with or closely similar to the 2 Zn----4 Zn transformation. 2 Zn insulin crystals, when soaked in m-cresol containing solvents, are destroyed. Crystals grown in the presence of m-cresol, however, are monoclinic and containing symmetrical hexamers of, notably, 4 Zn conformation. Phenol, o- and p-cresol, m-nitrophenol, Nipagin M and benzene were further additives tested, all of them inducing largely the same spectral effects except for benzene. The results presented corroborate the close correspondence of insulin's structure in solution and in the crystal as well as insulin's capacity for structural variation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验