Suppr超能文献

利用电子医疗记录和机器学习方法揭示哮喘急诊就诊中的种族差异。

Unraveling racial disparities in asthma emergency department visits using electronic healthcare records and machine learning.

机构信息

Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA.

Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.

出版信息

J Asthma. 2022 Jan;59(1):79-93. doi: 10.1080/02770903.2020.1838539. Epub 2020 Nov 9.

Abstract

OBJECTIVE

Hospital emergency department (ED) visits by asthmatics differ based on race and season. The objectives of this study were to investigate season- and race-specific disparities for asthma risk, and to identify environmental exposure variables associated with ED visits among more than 42,000 individuals of African American (AA) and European American (EA) descent identified through electronic health records (EHRs).

METHODS

We examined data from 42,375 individuals (AAs = 14,491, EAs = 27,884) identified in EHRs. We considered associated demographic (race, age, gender, insurance), clinical (smoking status, ED visits, FEV1%), and environmental exposures data (mold, pollen, and pollutants). Machine learning techniques, including random forest (RF), extreme gradient boosting (XGB), and decision tree (DT) were used to build and identify race- and -season-specific predictive models for asthma ED visits.

RESULTS

Significant differences in ED visits and FEV1% among AAs and EAs were identified. ED visits by AAs was 32.0% higher than EAs and AAs had 6.4% lower FEV1% value than EAs. XGB model was used to accurately classify asthma patients visiting ED into AAs and EAs. Pollen factor and pollution (PM2.5, PM10) were the key variables for asthma in AAs and EAs, respectively. Age and cigarette smoking increase asthma risk independent of seasons.

CONCLUSIONS

In this study, we observed racial and season-specific disparities between AAs and EAs asthmatics for ED visit and FEV1% severity, suggesting the need to address asthma disparities through key predictors including socio-economic status, particulate matter, and mold.

摘要

目的

哮喘患者在急诊科(ED)的就诊情况因种族和季节而异。本研究的目的是调查哮喘风险的季节和种族特异性差异,并确定超过 42000 名非裔美国人和欧洲裔美国人(EA)个体的电子健康记录(EHR)中与 ED 就诊相关的环境暴露变量。

方法

我们检查了来自 42375 名个体(AA=14491,EA=27884)的 EHR 数据。我们考虑了相关的人口统计学(种族、年龄、性别、保险)、临床(吸烟状况、ED 就诊、FEV1%)和环境暴露数据(霉菌、花粉和污染物)。使用机器学习技术,包括随机森林(RF)、极端梯度增强(XGB)和决策树(DT),构建并识别针对哮喘 ED 就诊的种族和季节特异性预测模型。

结果

确定了 AA 和 EA 之间 ED 就诊次数和 FEV1%的显著差异。AA 的 ED 就诊次数比 EA 高 32.0%,AA 的 FEV1%值比 EA 低 6.4%。XGB 模型可准确将就诊 ED 的哮喘患者分类为 AA 和 EA。花粉因子和污染(PM2.5、PM10)分别是 AA 和 EA 中哮喘的关键变量。年龄和吸烟会增加哮喘风险,与季节无关。

结论

在这项研究中,我们观察到 AA 和 EA 哮喘患者在 ED 就诊次数和 FEV1%严重程度方面存在种族和季节特异性差异,这表明需要通过关键预测指标(包括社会经济地位、颗粒物和霉菌)来解决哮喘差异。

相似文献

1
Unraveling racial disparities in asthma emergency department visits using electronic healthcare records and machine learning.
J Asthma. 2022 Jan;59(1):79-93. doi: 10.1080/02770903.2020.1838539. Epub 2020 Nov 9.
2
Understanding racial disparities in childhood asthma using individual- and neighborhood-level risk factors.
J Allergy Clin Immunol. 2022 Dec;150(6):1427-1436.e5. doi: 10.1016/j.jaci.2022.07.024. Epub 2022 Aug 12.
6
Predicting frequent emergency department visits among children with asthma using EHR data.
Pediatr Pulmonol. 2017 Jul;52(7):880-890. doi: 10.1002/ppul.23735. Epub 2017 May 30.
7
Do upper respiratory viruses contribute to racial and ethnic disparities in emergency department visits for asthma?
J Allergy Clin Immunol. 2023 Mar;151(3):778-782.e1. doi: 10.1016/j.jaci.2022.10.031. Epub 2022 Nov 16.
9
Predicting hospitalization of pediatric asthma patients in emergency departments using machine learning.
Int J Med Inform. 2021 Jul;151:104468. doi: 10.1016/j.ijmedinf.2021.104468. Epub 2021 Apr 20.

引用本文的文献

1
Integrating equity, diversity, and inclusion throughout the lifecycle of artificial intelligence for healthcare: a scoping review.
PLOS Digit Health. 2025 Jul 14;4(7):e0000941. doi: 10.1371/journal.pdig.0000941. eCollection 2025 Jul.
2
Inherent Bias in Electronic Health Records: A Scoping Review of Sources of Bias.
medRxiv. 2024 Apr 12:2024.04.09.24305594. doi: 10.1101/2024.04.09.24305594.
3
Ethnic variation in asthma healthcare utilisation and exacerbation: systematic review and meta-analysis.
ERJ Open Res. 2023 May 2;9(3). doi: 10.1183/23120541.00591-2022. eCollection 2023 Jul.
4
Leveraging genetic ancestry to study severe asthma exacerbations in an admixed population.
Thorax. 2023 Mar;78(3):220-221. doi: 10.1136/thorax-2022-219459. Epub 2022 Nov 18.
5
Increasing the Resolution and Broadening the Focus on Childhood Asthma Disparities.
Pediatrics. 2022 Aug 1;150(2). doi: 10.1542/peds.2022-057206.
6
Genetic ancestry differences in pediatric asthma readmission are mediated by socioenvironmental factors.
J Allergy Clin Immunol. 2021 Nov;148(5):1210-1218.e4. doi: 10.1016/j.jaci.2021.05.046. Epub 2021 Jul 1.

本文引用的文献

1
Deep longitudinal multiomics profiling reveals two biological seasonal patterns in California.
Nat Commun. 2020 Oct 1;11(1):4933. doi: 10.1038/s41467-020-18758-1.
2
Asthma epidemiology and risk factors.
Semin Immunopathol. 2020 Feb;42(1):5-15. doi: 10.1007/s00281-020-00785-1. Epub 2020 Feb 4.
3
Estimation of the Effects of Air Pollution on Hospitalization Expenditures for Asthma.
Int J Health Serv. 2020 Jan;50(1):100-109. doi: 10.1177/0020731419874996. Epub 2019 Sep 22.
4
The Projected Economic and Health Burden of Uncontrolled Asthma in the United States.
Am J Respir Crit Care Med. 2019 Nov 1;200(9):1102-1112. doi: 10.1164/rccm.201901-0016OC.
8
Age-Specific Associations of Ozone and Fine Particulate Matter with Respiratory Emergency Department Visits in the United States.
Am J Respir Crit Care Med. 2019 Apr 1;199(7):882-890. doi: 10.1164/rccm.201806-1147OC.
9
Poverty Status and Childhood Asthma in White and Black Families: National Survey of Children's Health.
Healthcare (Basel). 2018 Jun 12;6(2):62. doi: 10.3390/healthcare6020062.
10
Lung function association with outdoor temperature and relative humidity and its interaction with air pollution in the elderly.
Environ Res. 2018 Aug;165:110-117. doi: 10.1016/j.envres.2018.03.039. Epub 2018 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验