Suppr超能文献

体外评估 THP-1 巨噬细胞对用于声带组织工程应用的不同硬度的乙二醇壳聚糖水凝胶的反应。

An in vitro assessment of the response of THP-1 macrophages to varying stiffness of a glycol-chitosan hydrogel for vocal fold tissue engineering applications.

机构信息

School of Communication Sciences and Disorders, McGill University, Montreal, Canada.

Department of Biomedical Engineering, McGill University, Montreal, Canada.

出版信息

J Biomed Mater Res A. 2021 Aug;109(8):1337-1352. doi: 10.1002/jbm.a.37125. Epub 2020 Nov 6.

Abstract

The physical properties of a biomaterial play an essential role in regulating immune and reparative activities within the host tissue. This study aimed to evaluate the immunological impact of material stiffness of a glycol-chitosan hydrogel designed for vocal fold tissue engineering. Hydrogel stiffness was varied via the concentration of glyoxal cross-linker applied. Hydrogel mechanical properties were characterized through atomic force microscopy and shear plate rheometry. Using a transwell setup, macrophages were co-cultured with human vocal fold fibroblasts that were embedded within the hydrogel. Macrophage viability and cytokine secretion were evaluated at 3, 24, and 72 hr of culture. Flow cytometry was applied to evaluate macrophage cell surface markers after 72 hr of cell culture. Results indicated that increasing hydrogel stiffness was associated with increased anti-inflammatory activity compared to relevant controls. In addition, increased anti-inflammatory activity was observed in hydrogel co-cultures. This study highlighted the importance of hydrogel stiffness from an immunological viewpoint when designing novel vocal fold hydrogels.

摘要

生物材料的物理特性在调节宿主组织内的免疫和修复活动方面起着至关重要的作用。本研究旨在评估设计用于声带组织工程的乙二醇壳聚糖水凝胶的材料硬度对免疫的影响。通过应用不同浓度的乙二醛交联剂来改变水凝胶的硬度。通过原子力显微镜和剪切板流变仪来表征水凝胶的力学性能。使用 Transwell 装置,将巨噬细胞与嵌入水凝胶中的人声带成纤维细胞共培养。在培养的 3、24 和 72 小时评估巨噬细胞活力和细胞因子分泌。在细胞培养 72 小时后,应用流式细胞术评估巨噬细胞表面标志物。结果表明,与相关对照相比,增加水凝胶硬度与抗炎活性增加相关。此外,在水凝胶共培养物中观察到抗炎活性增加。本研究从免疫学角度强调了设计新型声带水凝胶时水凝胶硬度的重要性。

相似文献

2
In Vitro Investigation of Vocal Fold Cellular Response to Variations in Hydrogel Porosity and Elasticity.
ACS Biomater Sci Eng. 2024 Jun 10;10(6):3909-3922. doi: 10.1021/acsbiomaterials.4c00197. Epub 2024 May 24.
4
3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
Mater Sci Eng C Mater Biol Appl. 2020 Aug;113:111008. doi: 10.1016/j.msec.2020.111008. Epub 2020 Apr 24.
5
A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
Biochimie. 2006 May;88(5):551-64. doi: 10.1016/j.biochi.2006.03.002. Epub 2006 Mar 31.
8
Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
Mater Sci Eng C Mater Biol Appl. 2018 Aug 1;89:256-264. doi: 10.1016/j.msec.2018.04.018. Epub 2018 Apr 12.
9
Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.
J Mech Behav Biomed Mater. 2013 Apr;20:217-26. doi: 10.1016/j.jmbbm.2012.09.012. Epub 2012 Nov 27.

引用本文的文献

1
Material matters: exploring the interplay between natural biomaterials and host immune system.
Front Immunol. 2023 Oct 23;14:1269960. doi: 10.3389/fimmu.2023.1269960. eCollection 2023.
2
On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI).
Eur J Pharm Sci. 2023 Dec 1;191:106596. doi: 10.1016/j.ejps.2023.106596. Epub 2023 Sep 26.
5
Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy.
Adv Sci (Weinh). 2023 Jul;10(21):e2300670. doi: 10.1002/advs.202300670. Epub 2023 Apr 29.
7
Engineering Surfaces with Immune Modulating Properties of Mucin Hydrogels.
ACS Appl Mater Interfaces. 2022 Sep 7;14(35):39727-39735. doi: 10.1021/acsami.1c19250. Epub 2022 Aug 24.
8
Progress in Vocal Fold Regenerative Biomaterials: An Immunological Perspective.
Adv Nanobiomed Res. 2022 Feb;2(2). doi: 10.1002/anbr.202100119. Epub 2021 Dec 18.
9
In Vitro Evaluation of Biomaterials for Vocal Fold Injection: A Systematic Review.
Polymers (Basel). 2021 Aug 6;13(16):2619. doi: 10.3390/polym13162619.

本文引用的文献

3
Biomaterials: Foreign Bodies or Tuners for the Immune Response?
Int J Mol Sci. 2019 Feb 1;20(3):636. doi: 10.3390/ijms20030636.
4
Mechanotransduction of vocal fold fibroblasts and mesenchymal stromal cells in the context of the vocal fold mechanome.
J Biomech. 2019 Jan 23;83:227-234. doi: 10.1016/j.jbiomech.2018.11.050. Epub 2018 Dec 7.
5
Divergent immune responses to synthetic and biological scaffolds.
Biomaterials. 2019 Feb;192:405-415. doi: 10.1016/j.biomaterials.2018.11.002. Epub 2018 Nov 9.
6
In vitro evaluation of anti-fibrotic effects of select cytokines for vocal fold scar treatment.
J Biomed Mater Res B Appl Biomater. 2019 May;107(4):1056-1067. doi: 10.1002/jbm.b.34198. Epub 2018 Sep 5.
7
Hydrogel as a bioactive material to regulate stem cell fate.
Bioact Mater. 2016 May 12;1(1):39-55. doi: 10.1016/j.bioactmat.2016.05.001. eCollection 2016 Sep.
8
Can we achieve the perfect injectable scaffold for cell therapy?
Future Sci OA. 2018 Jan 25;4(4):FSO284. doi: 10.4155/fsoa-2017-0153. eCollection 2018 Apr.
10
Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration.
Regeneration (Oxf). 2017 Jun 6;4(2):39-53. doi: 10.1002/reg2.77. eCollection 2017 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验