Suppr超能文献

迈向基于代理的声带手术损伤与修复模型的生理尺度:敏感性分析、校准与验证

Towards a Physiological Scale of Vocal Fold Agent-Based Models of Surgical Injury and Repair: Sensitivity Analysis, Calibration and Verification.

作者信息

Garg Aman, Yuen Samson, Seekhao Nuttiiya, Yu Grace, Karwowski Jeannie A C, Powell Michael, Sakata Jon T, Mongeau Luc, JaJa Joseph, Li-Jessen Nicole Y K

机构信息

Department of Biological and Biomedical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.

School of Communication Sciences and Disorders, McGill University, Montreal, QC H3A 1G1, Canada.

出版信息

Appl Sci (Basel). 2019 Aug 1;9(15). doi: 10.3390/app9152974. Epub 2019 Jul 25.

Abstract

Agent based models (ABM) were developed to numerically simulate the biological response to surgical vocal fold injury and repair at the physiological level. This study aimed to improve the representation of existing ABM through a combination of empirical and computational experiments. Empirical data of vocal fold cell populations including neutrophils, macrophages and fibroblasts were obtained using flow cytometry up to four weeks following surgical injury. Random Forests were used as a sensitivity analysis method to identify model parameters that were most influential to ABM outputs. Statistical Parameter Optimization Tool for Python was used to calibrate those parameter values to match the ABM-simulation data with the corresponding empirical data from Day 1 to Day 5 following surgery. Model performance was evaluated by verifying if the empirical data fell within the 95% confidence intervals of ABM outputs of cell quantities at Day 7, Week 2 and Week 4. For Day 7, all empirical data were within the ABM output ranges. The trends of ABM-simulated cell populations were also qualitatively comparable to those of the empirical data beyond Day 7. Exact values, however, fell outside of the 95% statistical confidence intervals. Parameters related to fibroblast proliferation were indicative to the ABM-simulation of fibroblast dynamics in final stages of wound healing.

摘要

基于主体的模型(ABM)被开发用于在生理水平上对手术性声带损伤和修复的生物学反应进行数值模拟。本研究旨在通过结合实证和计算实验来改进现有ABM的表现形式。在手术损伤后的四周内,使用流式细胞术获得了包括中性粒细胞、巨噬细胞和成纤维细胞在内的声带细胞群体的实证数据。随机森林被用作敏感性分析方法,以识别对ABM输出最有影响的模型参数。使用Python的统计参数优化工具来校准这些参数值,以使ABM模拟数据与手术后第1天至第5天的相应实证数据相匹配。通过验证实证数据是否落在第7天、第2周和第4周细胞数量的ABM输出的95%置信区间内来评估模型性能。对于第7天,所有实证数据都在ABM输出范围内。在第7天之后,ABM模拟的细胞群体趋势在定性上也与实证数据的趋势相当。然而,确切值落在了95%统计置信区间之外。与成纤维细胞增殖相关的参数对伤口愈合最后阶段成纤维细胞动力学的ABM模拟具有指示作用。

相似文献

1
迈向基于代理的声带手术损伤与修复模型的生理尺度:敏感性分析、校准与验证
Appl Sci (Basel). 2019 Aug 1;9(15). doi: 10.3390/app9152974. Epub 2019 Jul 25.
2
基于智能体的高性能建模在声带炎症与修复中的应用
Front Physiol. 2018 Apr 12;9:304. doi: 10.3389/fphys.2018.00304. eCollection 2018.
3
手术损伤声带炎症与愈合的生物模拟
Ann Otol Rhinol Laryngol. 2010 Jun;119(6):412-23. doi: 10.1177/000348941011900609.
6
动脉粥样硬化斑块发展的全耦合计算流体动力学-基于智能体模型:多尺度建模框架与参数敏感性分析
Comput Biol Med. 2020 Mar;118:103623. doi: 10.1016/j.compbiomed.2020.103623. Epub 2020 Jan 18.
7
炎症与伤口愈合的计算建模
Adv Wound Care (New Rochelle). 2013 Nov;2(9):527-537. doi: 10.1089/wound.2012.0416.
9
10
贝叶斯校准用于预测体外肿瘤生长的随机多尺度基于代理的模型。
PLoS Comput Biol. 2021 Nov 29;17(11):e1008845. doi: 10.1371/journal.pcbi.1008845. eCollection 2021 Nov.

引用本文的文献

1
一项综合实证与计算的研究,以解读求助行为和言语污名。
Commun Med (Lond). 2024 Nov 9;4(1):228. doi: 10.1038/s43856-024-00651-3.
2
外展性声带麻痹的有效治疗方法:全面综述
Cureus. 2024 Aug 21;16(8):e67438. doi: 10.7759/cureus.67438. eCollection 2024 Aug.
4
社论:机器学习与计算机模拟在解决复杂生理和医学问题中的整合
Front Physiol. 2022 Jul 5;13:949771. doi: 10.3389/fphys.2022.949771. eCollection 2022.
5
声带再生生物材料的进展:免疫学视角
Adv Nanobiomed Res. 2022 Feb;2(2). doi: 10.1002/anbr.202100119. Epub 2021 Dec 18.
6
体外评估 THP-1 巨噬细胞对用于声带组织工程应用的不同硬度的乙二醇壳聚糖水凝胶的反应。
J Biomed Mater Res A. 2021 Aug;109(8):1337-1352. doi: 10.1002/jbm.a.37125. Epub 2020 Nov 6.
7
含肝细胞生长因子的透明质酸/藻酸盐水凝胶促进声带伤口愈合。
Tissue Eng Regen Med. 2020 Oct;17(5):651-658. doi: 10.1007/s13770-020-00280-6. Epub 2020 Jul 16.
8
催乳素可能作为一种调节剂促进声带创伤愈合。
Biosci Rep. 2020 Jul 31;40(7). doi: 10.1042/BSR20200467.

本文引用的文献

1
基于智能体的高性能建模在声带炎症与修复中的应用
Front Physiol. 2018 Apr 12;9:304. doi: 10.3389/fphys.2018.00304. eCollection 2018.
3
基于代理的声带炎症与修复三维模拟的原位可视化
Supercomput Front Innov. 2017 Jul-Sep;4(3):68-79. doi: 10.14529/jsfi170304.
4
高迁移率族蛋白B1在手术损伤大鼠声带中的细胞来源及促炎作用
Laryngoscope. 2017 Jun;127(6):E193-E200. doi: 10.1002/lary.26333. Epub 2016 Oct 24.
5
基于智能体的实时建模模拟与复杂生物系统的原位可视化:以声带炎症与愈合为例的研究
IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. 2016 May;2016:463-472. doi: 10.1109/IPDPSW.2016.20.
6
碱性成纤维细胞生长因子对大鼠模型慢性声带瘢痕形成的组织学影响
Clin Exp Otorhinolaryngol. 2016 Mar;9(1):56-61. doi: 10.21053/ceo.2016.9.1.56. Epub 2016 Mar 7.
7
使用现成的Python包来确定模型参数
PLoS One. 2015 Dec 17;10(12):e0145180. doi: 10.1371/journal.pone.0145180. eCollection 2015.
8
使用贝叶斯统计模型检验对生物模型进行自动参数估计。
BMC Bioinformatics. 2015;16 Suppl 17(Suppl 17):S8. doi: 10.1186/1471-2105-16-S17-S8. Epub 2015 Dec 7.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验