Suppr超能文献

迈向基于代理的声带手术损伤与修复模型的生理尺度:敏感性分析、校准与验证

Towards a Physiological Scale of Vocal Fold Agent-Based Models of Surgical Injury and Repair: Sensitivity Analysis, Calibration and Verification.

作者信息

Garg Aman, Yuen Samson, Seekhao Nuttiiya, Yu Grace, Karwowski Jeannie A C, Powell Michael, Sakata Jon T, Mongeau Luc, JaJa Joseph, Li-Jessen Nicole Y K

机构信息

Department of Biological and Biomedical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.

School of Communication Sciences and Disorders, McGill University, Montreal, QC H3A 1G1, Canada.

出版信息

Appl Sci (Basel). 2019 Aug 1;9(15). doi: 10.3390/app9152974. Epub 2019 Jul 25.

Abstract

Agent based models (ABM) were developed to numerically simulate the biological response to surgical vocal fold injury and repair at the physiological level. This study aimed to improve the representation of existing ABM through a combination of empirical and computational experiments. Empirical data of vocal fold cell populations including neutrophils, macrophages and fibroblasts were obtained using flow cytometry up to four weeks following surgical injury. Random Forests were used as a sensitivity analysis method to identify model parameters that were most influential to ABM outputs. Statistical Parameter Optimization Tool for Python was used to calibrate those parameter values to match the ABM-simulation data with the corresponding empirical data from Day 1 to Day 5 following surgery. Model performance was evaluated by verifying if the empirical data fell within the 95% confidence intervals of ABM outputs of cell quantities at Day 7, Week 2 and Week 4. For Day 7, all empirical data were within the ABM output ranges. The trends of ABM-simulated cell populations were also qualitatively comparable to those of the empirical data beyond Day 7. Exact values, however, fell outside of the 95% statistical confidence intervals. Parameters related to fibroblast proliferation were indicative to the ABM-simulation of fibroblast dynamics in final stages of wound healing.

摘要

基于主体的模型(ABM)被开发用于在生理水平上对手术性声带损伤和修复的生物学反应进行数值模拟。本研究旨在通过结合实证和计算实验来改进现有ABM的表现形式。在手术损伤后的四周内,使用流式细胞术获得了包括中性粒细胞、巨噬细胞和成纤维细胞在内的声带细胞群体的实证数据。随机森林被用作敏感性分析方法,以识别对ABM输出最有影响的模型参数。使用Python的统计参数优化工具来校准这些参数值,以使ABM模拟数据与手术后第1天至第5天的相应实证数据相匹配。通过验证实证数据是否落在第7天、第2周和第4周细胞数量的ABM输出的95%置信区间内来评估模型性能。对于第7天,所有实证数据都在ABM输出范围内。在第7天之后,ABM模拟的细胞群体趋势在定性上也与实证数据的趋势相当。然而,确切值落在了95%统计置信区间之外。与成纤维细胞增殖相关的参数对伤口愈合最后阶段成纤维细胞动力学的ABM模拟具有指示作用。

相似文献

3
7
Computational Modeling of Inflammation and Wound Healing.炎症与伤口愈合的计算建模
Adv Wound Care (New Rochelle). 2013 Nov;2(9):527-537. doi: 10.1089/wound.2012.0416.

引用本文的文献

本文引用的文献

7
SPOTting Model Parameters Using a Ready-Made Python Package.使用现成的Python包来确定模型参数
PLoS One. 2015 Dec 17;10(12):e0145180. doi: 10.1371/journal.pone.0145180. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验