限制立方样条用于周期性数据建模。
Restricted cubic splines for modelling periodic data.
机构信息
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper/Capodistria, Slovenia.
Institute for Biostatistics and Medical Informatics, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
出版信息
PLoS One. 2020 Oct 28;15(10):e0241364. doi: 10.1371/journal.pone.0241364. eCollection 2020.
In regression modelling the non-linear relationships between explanatory variables and outcome are often effectively modelled using restricted cubic splines (RCS). We focus on situations where the values of the outcome change periodically over time and we define an extension of RCS that considers periodicity by introducing numerical constraints. Practical examples include the estimation of seasonal variations, a common aim in virological research, or the study of hormonal fluctuations within menstrual cycle. Using real and simulated data with binary outcomes we show that periodic RCS can perform better than other methods proposed for periodic data. They greatly reduce the variability of the estimates obtained at the extremes of the period compared to cubic spline methods and require the estimation of fewer parameters; cosinor models perform similarly to the best cubic spline model and their estimates are generally less variable, but only if an appropriate number of harmonics is used. Periodic RCS provide a useful extension of RCS for periodic data when the assumption of equality of the outcome at the beginning and end of the period is scientifically sensible. The implementation of periodic RCS is freely available in peRiodiCS R package and the paper presents examples of their usage for the modelling of the seasonal occurrence of the viruses.
在回归建模中,解释变量和结果之间的非线性关系通常可以通过限制立方样条(RCS)来有效地建模。我们专注于结果随时间周期性变化的情况,并通过引入数值约束来定义考虑周期性的 RCS 扩展。实际示例包括季节性变化的估计,这是病毒学研究中的常见目标,或在月经周期内研究激素波动。使用具有二进制结果的真实和模拟数据,我们表明周期性 RCS 可以比其他针对周期性数据提出的方法表现更好。与三次样条方法相比,它们大大降低了在周期极值处获得的估计值的可变性,并且需要估计的参数更少;余弦模型的表现与最佳三次样条模型相似,并且它们的估计值通常变化较小,但前提是使用适当数量的谐波。当周期开始和结束时结果相等的假设在科学上有意义时,周期性 RCS 为周期性数据提供了 RCS 的有用扩展。周期性 RCS 的实现可在 peRiodiCS R 包中免费获得,本文介绍了它们在建模病毒季节性发生中的使用示例。