Suppr超能文献

Quantitative ultrasonic tissue characterization with real-time integrated backscatter imaging in normal human subjects and in patients with dilated cardiomyopathy.

作者信息

Vered Z, Barzilai B, Mohr G A, Thomas L J, Genton R, Sobel B E, Shoup T A, Melton H E, Miller J G, Pérez J E

机构信息

Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.

出版信息

Circulation. 1987 Nov;76(5):1067-73. doi: 10.1161/01.cir.76.5.1067.

Abstract

We have shown previously that the physical properties of myocardium in dogs can be characterized with quantitative ultrasonic integrated backscatter and that interrogation of the tissue with ultrasound can delineate cardiac cycle-dependent changes in ultrasonic backscatter in normal tissue that disappear with ischemia and reappear with reperfusion if functional integrity is restorable. To determine whether this approach can be applied to man, we implemented an automatic gain compensation and continuous data acquisition system to characterize myocardium with quantitative ultrasonic backscatter and to detect cardiac cycle-dependent changes in real time. We developed a two-dimensional echocardiographic system with quantitative integrated backscatter imaging capabilities for use in human subjects that can automatically differentiate ultrasonic signals from blood as opposed to those obtained from tissue and adjust the slope of the gain compensation appropriately. Real-time images were formed from a continuous signal proportional to the logarithm of the integrated backscatter along each A-line. In our initial investigation, 15 normal volunteers (ages 17 to 40 years, heart rates 44 to 88 beats/min) and five patients with dilated cardiomyopathy (ages 22 to 52, heart rates 82 to 120 beats/min) were studied with conventional parasternal long-axis echocardiographic views. Diastolic-to-systolic variation of integrated backscatter in the interventricular septum and left ventricular posterior wall was seen in each of the normal subjects averaging 4.6 +/- 1.4 dB (SD) and 5.3 +/- 1.5 dB (n = 127 sites), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验