Suppr超能文献

流行病学地理信息系统的应用:基于 OMOP 通用数据模型的开源空间分析工具。

Application of Epidemiological Geographic Information System: An Open-Source Spatial Analysis Tool Based on the OMOP Common Data Model.

机构信息

Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.

Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 16499, Korea.

出版信息

Int J Environ Res Public Health. 2020 Oct 26;17(21):7824. doi: 10.3390/ijerph17217824.

Abstract

BACKGROUND

Spatial epidemiology is used to evaluate geographical variations and disparities in health outcomes; however, constructing geographic statistical models requires a labor-intensive process that limits the overall utility. We developed an open-source software for spatial epidemiological analysis and demonstrated its applicability and quality.

METHODS

Based on standardized geocode and observational health data, the Application of Epidemiological Geographic Information System (AEGIS) provides two spatial analysis methods: disease mapping and detecting clustered medical conditions and outcomes. The AEGIS assesses the geographical distribution of incidences and health outcomes in Korea and the United States, specifically incidence of cancers and their mortality rates, endemic malarial areas, and heart diseases (only the United States).

RESULTS

The AEGIS-generated spatial distribution of incident cancer in Korea was consistent with previous reports. The incidence of liver cancer in women with the highest Moran's I (0.44; < 0.001) was 17.4 (10.3-26.9). The malarial endemic cluster was identified in Paju-si, Korea ( < 0.001). When the AEGIS was applied to the database of the United States, a heart disease cluster was appropriately identified ( < 0.001).

CONCLUSIONS

As an open-source, cross-country, spatial analytics solution, AEGIS may globally assess the differences in geographical distribution of health outcomes through the use of standardized geocode and observational health databases.

摘要

背景

空间流行病学用于评估健康结果的地理变化和差异;然而,构建地理统计模型需要一个劳动密集型的过程,限制了整体效用。我们开发了一个用于空间流行病学分析的开源软件,并展示了其适用性和质量。

方法

基于标准化的地理编码和观测健康数据,应用流行病学地理信息系统(AEGIS)提供了两种空间分析方法:疾病制图和检测集中的医疗条件和结果。AEGIS 评估了韩国和美国的发病率和健康结果的地理分布,特别是癌症及其死亡率、地方性疟疾地区和心脏病(仅美国)的发病率。

结果

AEGIS 生成的韩国癌症发病率的空间分布与之前的报告一致。女性肝癌发病率最高的莫兰指数(0.44;<0.001)为 17.4(10.3-26.9)。韩国的平泽市被确定为疟疾流行区(<0.001)。当 AEGIS 应用于美国的数据库时,一个心脏病群集被恰当地识别出来(<0.001)。

结论

作为一个开源的、跨国的空间分析解决方案,AEGIS 可以通过使用标准化的地理编码和观测健康数据库,在全球范围内评估健康结果的地理分布差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6638/7663469/9abc4138a16d/ijerph-17-07824-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验