Suppr超能文献

基于 GIS 的自适应神经模糊推理系统(ANFIS)预测人类布鲁氏菌病(HB)的空间分布。

Spatial prediction of human brucellosis (HB) using a GIS-based adaptive neuro-fuzzy inference system (ANFIS).

机构信息

Department of GIS, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.

出版信息

Acta Trop. 2021 Aug;220:105951. doi: 10.1016/j.actatropica.2021.105951. Epub 2021 May 9.

Abstract

OBJECTIVE

This study pursues three main objectives: 1) exploring the spatial distribution patterns of human brucellosis (HB); 2) identifying parameters affecting the disease spread; and 3) modeling and predicting the spatial distribution of HB cases in 2012-2016 and 2017-2018, respectively, in rural districts of Mazandaran province, Iran.

METHODS

We collected data on the disease incidence, demography, ecology, climate, topography, and vegetation. Using the Global Moran's I statistic, we measured spatial autocorrelation between log (number of HB cases). We applied the Getis-Ord G statistic to identify areas with high and low risk of the disease. To investigate the relationships between the factors affecting the incidence of HB as input variables together and the factors with the log (number of HB cases) as an output variable, we used the statistical linear regression model and the Pearson correlation coefficient. Then, we implemented a GIS-based adaptive neuro-fuzzy inference system (ANFIS) with two subtractive clustering and fuzzy c-means (FCM) clustering methods to model and predict the spatial distribution of HB.

RESULTS

Global Moran's I spatial autocorrelation analysis indicated that the type of HB distribution is clustered in all years except 2014 and 2017, which are random. According to the Getis-Ord G analysis, the location of the hot spots varied during 2012-2018. In 2012 and 2013, most of the hot spots were seen in the west of the province. While in 2018, they were mostly concentrated in the eastern regions of the province. The linear regression model indicated that the parameters affecting the incidence of HB are independent of each other and can explain only 25.3% of the total changes in the log (number of HB cases). The results of the Pearson correlation coefficient showed that there were positive relationships between vegetation, log (population), and the number of sheep and cattle (p-value < 0.05). The above-mentioned factors had the strongest positive correlation with the log (number of HB cases) (p-value < 0.01). These results may be due to the fact that vegetation regions are suitable for livestock grazing, attracting large crowds of people. Therefore, this will increase HB cases. We compared the results of subtractive clustering and FCM clustering methods by evaluation criteria (e.g., linear correlation coefficient (LCC) and mean absolute error (MAE)) in two phases of development and assessment of the ANFIS model. In the assessment phase, we predicted the spatial distribution of log (number of HB cases) in 2017 and 2018 by subtractive clustering (R = 0.699, LCC or R = 0.692, MAE = 0.509, MSE = 0.455) and by FCM clustering (R = 0.704, LCC or R = 0.697, MAE = 0.512, MSE = 0.448) that showed FCM clustering outperformed the subtractive clustering.

CONCLUSION

The findings may have important implications for public health. The emergence of the hot spots in the east of the province can be a warning to the health system. Health authorities can use the findings of this study to predict the spread of HB and perform HB prevention programs. They can also investigate the factors affecting the prevalence of the disease, identify high-risk areas, and ultimately allocate resources to high-risk regions.

摘要

目的

本研究旨在实现三个主要目标:1)探索人类布鲁氏菌病(HB)的空间分布模式;2)确定影响疾病传播的参数;3)分别对 2012-2016 年和 2017-2018 年伊朗马赞达兰省农村地区 HB 病例的空间分布进行建模和预测。

方法

我们收集了疾病发病率、人口统计学、生态学、气候、地形和植被等数据。使用全局 Moran's I 统计量衡量对数(HB 病例数)之间的空间自相关。我们应用 Getis-Ord G 统计量来识别疾病高风险和低风险地区。为了研究影响 HB 发病率的因素作为输入变量与作为输出变量的对数(HB 病例数)之间的关系,我们使用了统计线性回归模型和 Pearson 相关系数。然后,我们使用基于 GIS 的自适应神经模糊推理系统(ANFIS),结合两种减法聚类和模糊 C 均值(FCM)聚类方法,对 HB 的空间分布进行建模和预测。

结果

全局 Moran's I 空间自相关分析表明,除 2014 年和 2017 年外,HB 的分布类型在所有年份均为聚类。根据 Getis-Ord G 分析,热点的位置在 2012-2018 年间发生了变化。2012 年和 2013 年,大多数热点出现在该省的西部。而在 2018 年,它们主要集中在该省的东部地区。线性回归模型表明,影响 HB 发病率的参数彼此独立,只能解释对数(HB 病例数)总变化的 25.3%。Pearson 相关系数的结果表明,植被、对数(人口)和绵羊和牛的数量之间存在正相关(p 值<0.05)。这些因素与对数(HB 病例数)之间存在最强的正相关(p 值<0.01)。这些结果可能是由于植被地区适合牲畜放牧,吸引了大量人群。因此,这将增加 HB 病例。我们通过评估标准(例如线性相关系数(LCC)和平均绝对误差(MAE))比较了减法聚类和 FCM 聚类方法在 ANFIS 模型的发展和评估阶段的结果。在评估阶段,我们通过减法聚类(R=0.699,LCC 或 R=0.692,MAE=0.509,MSE=0.455)和 FCM 聚类(R=0.704,LCC 或 R=0.697,MAE=0.512,MSE=0.448)预测了 2017 年和 2018 年的对数(HB 病例数)的空间分布,结果表明 FCM 聚类优于减法聚类。

结论

这些发现可能对公共卫生具有重要意义。该省东部热点的出现可能是对卫生系统的警告。卫生当局可以利用本研究的结果预测 HB 的传播,并开展 HB 预防计划。他们还可以调查影响疾病流行的因素,确定高风险地区,并最终将资源分配到高风险地区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验