Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel.
The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
J Neurosci. 2020 Dec 2;40(49):9346-9363. doi: 10.1523/JNEUROSCI.1546-20.2020. Epub 2020 Oct 28.
The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential (AP) firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here, we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects the input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance (Ra), and location of individual terminals. Moreover, we show that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of the terminals in simulated models of inflammatory or neuropathic hyperexcitability led to a change in the temporal pattern of AP firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathologic conditions, leading to pain hypersensitivity. Noxious stimuli are detected by terminal endings of primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates toward the CNS, thus shaping the pain sensation. Here, we revealed that the structure of the nociceptive terminal tree determines the output of nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathologic conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathologic conditions, leading to pain.
初级伤害感受神经元的外周终端输出,其检测并编码有关有害刺激的信息,对确定疼痛感觉至关重要。伤害性末端末端是由具有不同几何形状的多个分支组装而成的形态复杂结构,它们以多种形式汇聚在一起形成末端树。单个末端的输出由产生动作电位(AP)放电的产生电位和电压门控通道的换能器通道的特性定义。然而,在大多数情况下,有害刺激会激活多个末端;因此,伤害性神经元的输出由各个末端的输入的整合和计算定义。在这里,我们使用伤害性末端树的计算模型来研究末端树的结构如何影响初级伤害感受神经元的输入-输出关系。我们表明,伤害感受神经元的输入-输出特性取决于单个末端的长度、轴向电阻(Ra)和位置。此外,我们表明,由辣椒素样电流激活多个末端允许来自单个末端的响应的总和,从而导致伤害性输出增加。在炎症或神经病理性超兴奋性的模拟模型中刺激末端会导致 AP 放电的时间模式发生变化,强调了时间代码在传递有关伤害性输出变化的关键信息中的作用,导致疼痛敏感性增加。有害刺激由初级伤害感受神经元的末端末端检测到,这些末端末端组织成形态复杂的末端树。来自多个末端的信息沿着末端树整合,计算神经元输出,该输出向 CNS 传播,从而塑造疼痛感觉。在这里,我们揭示了伤害性末端树的结构决定了伤害性神经元的输出。我们表明,有害信息的整合取决于末端树的形态,以及这种整合以及随之而来的神经元输出如何在病理条件下发生变化。我们的发现有助于预测伤害性神经元如何对有害刺激进行编码,以及这种编码如何在病理条件下发生变化,导致疼痛。