Liang Xinya
University of Arkansas, Fayetteville, AR, USA.
Educ Psychol Meas. 2020 Dec;80(6):1025-1058. doi: 10.1177/0013164420906449. Epub 2020 Feb 26.
Bayesian structural equation modeling (BSEM) is a flexible tool for the exploration and estimation of sparse factor loading structures; that is, most cross-loading entries are zero and only a few important cross-loadings are nonzero. The current investigation was focused on the BSEM with small-variance normal distribution priors (BSEM-N) for both variable selection and model estimation. The prior sensitivity in BSEM-N was explored in factor analysis models with sparse loading structures through a simulation study (Study 1) and an empirical example (Study 2). Study 1 examined the prior sensitivity in BSEM-N based on the model fit, population model recovery, true and false positive rates, and parameter estimation. Seven shrinkage priors on cross-loadings and five noninformative/vague priors on other model parameters were examined. Study 2 provided a real data example to illustrate the impact of various priors on model fit and parameter selection and estimation. Results indicated that when the 95% credible intervals of shrinkage priors barely covered the population cross-loading values, it resulted in the best balance between true and false positives. If the goal is to perform variable selection, a sparse cross-loading structure is required, preferably with a minimal number of nontrivial cross-loadings and relatively high primary loading values. To improve parameter estimates, a relatively large prior variance is preferred. When cross-loadings are relatively large, BSEM-N with zero-mean priors is not recommended for the estimation of cross-loadings and factor correlations.
贝叶斯结构方程模型(BSEM)是一种用于探索和估计稀疏因子载荷结构的灵活工具;也就是说,大多数交叉载荷项为零,只有少数重要的交叉载荷项非零。当前的研究聚焦于具有小方差正态分布先验的BSEM(BSEM-N),用于变量选择和模型估计。通过模拟研究(研究1)和一个实证例子(研究2),在具有稀疏载荷结构的因子分析模型中探索了BSEM-N中的先验敏感性。研究1基于模型拟合、总体模型恢复、真阳性率和假阳性率以及参数估计,检验了BSEM-N中的先验敏感性。检验了交叉载荷上的七种收缩先验以及其他模型参数上的五种非信息性/模糊先验。研究2提供了一个实际数据例子,以说明各种先验对模型拟合以及参数选择和估计的影响。结果表明,当收缩先验的95%可信区间勉强覆盖总体交叉载荷值时,能在真阳性和假阳性之间实现最佳平衡。如果目标是进行变量选择,则需要一个稀疏的交叉载荷结构,最好具有最少数量的非平凡交叉载荷和相对较高的主载荷值。为了改进参数估计,优先选择相对较大的先验方差。当交叉载荷相对较大时,不建议使用具有零均值先验的BSEM-N来估计交叉载荷和因子相关性。