College of Nursing, Marquette University.
Department of Child Development and Education, University of Amsterdam.
Psychol Methods. 2020 Feb;25(1):46-70. doi: 10.1037/met0000224. Epub 2019 Jun 10.
In a frequentist framework, the exact fit of a structural equation model (SEM) is typically evaluated with the chi-square test and at least one index of approximate fit. Current Bayesian SEM (BSEM) software provides one measure of overall fit: the posterior predictive p value (PPP χ2 ). Because of the noted limitations of PPP χ2 , common practice for evaluating Bayesian model fit instead focuses on model comparison, using information criteria or Bayes factors. Fit indices developed under maximum-likelihood estimation have not been incorporated into software for BSEM. We propose adapting 7 chi-square-based approximate fit indices for BSEM, using a Bayesian analog of the chi-square model-fit statistic. Simulation results show that the sampling distributions of the posterior means of these fit indices are similar to their frequentist counterparts across sample sizes, model types, and levels of misspecification when BSEMs are estimated with noninformative priors. The proposed fit indices therefore allow overall model-fit evaluation using familiar metrics of the original indices, with an accompanying interval to quantify their uncertainty. Illustrative examples with real data raise some important issues about the proposed fit indices' application to models specified with informative priors, when Bayesian and frequentist estimation methods might not yield similar results. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
在频率论框架中,结构方程模型 (SEM) 的精确拟合通常通过卡方检验和至少一个近似拟合指数进行评估。当前的贝叶斯 SEM (BSEM) 软件提供了一种整体拟合度的度量:后验预测 p 值 (PPP χ2)。由于 PPP χ2 存在明显的局限性,因此评估贝叶斯模型拟合度的常用方法实际上侧重于模型比较,使用信息准则或贝叶斯因子。基于最大似然估计开发的拟合指数尚未纳入 BSEM 的软件中。我们建议使用贝叶斯 χ2 模型拟合统计量的类比,为 BSEM 改编 7 个基于 χ2 的近似拟合指数。模拟结果表明,当使用非信息先验估计 BSEM 时,这些拟合指数的后验均值的抽样分布在样本大小、模型类型和误设定水平方面与它们的频率论对应物相似。因此,所提出的拟合指数允许使用原始指数的熟悉指标进行整体模型拟合评估,并附有一个区间来量化它们的不确定性。使用真实数据的说明性示例提出了一些关于将拟议拟合指数应用于具有信息先验的模型的重要问题,当贝叶斯和频率论估计方法可能不会产生相似的结果时。(PsycINFO 数据库记录(c)2020 APA,保留所有权利)。