Suppr超能文献

具有超过1300°C耐高温性能的超强、超弹性和层状多拱结构ZrO-AlO纳米纤维气凝胶

Ultrastrong, Superelastic, and Lamellar Multiarch Structured ZrO-AlO Nanofibrous Aerogels with High-Temperature Resistance over 1300 °C.

作者信息

Zhang Xinxin, Wang Fei, Dou Lvye, Cheng Xiaota, Si Yang, Yu Jianyong, Ding Bin

机构信息

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.

Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.

出版信息

ACS Nano. 2020 Nov 24;14(11):15616-15625. doi: 10.1021/acsnano.0c06423. Epub 2020 Oct 29.

Abstract

Advanced ceramic aerogel materials with a performance combining sufficient mechanical robustness and splendid high-temperature resistance are urgently needed as thermal insulators in harsh environments. However, the practical applications of ceramic aerogel materials are always limited by poor mechanical performance and degradation under thermal shock. Here, we report the facile creation of lamellar multiarch structured ceramic nanofibrous aerogels that are simultaneously ultrastrong, superelastic, and high temperature resistant by combining ZrO-AlO nanofibers with Al(HPO) matrices. The resulting ZrO-AlO nanofibrous aerogels exhibit the integrated properties of rapid recovery from a strain of 90%, high compression strength of more than 1100 kPa (at a strain of 90%), high fatigue resistance, and temperature-invariant superelasticity. Moreover, the all-ceramic component feature also provides the ceramic nanofibrous aerogels with high-temperature resistance up to 1300 °C and thermal insulation performance with low thermal conductivity (0.0322 W m K). These superior performances make the ceramic aerogels ideal for high-temperature thermal insulation materials in extreme conditions.

摘要

在恶劣环境中,迫切需要具有足够机械强度和出色耐高温性能的先进陶瓷气凝胶材料作为隔热材料。然而,陶瓷气凝胶材料的实际应用总是受到机械性能差和热冲击下性能退化的限制。在此,我们报告了通过将ZrO-AlO纳米纤维与Al(HPO)基质相结合,轻松制备出具有层状多拱形结构的陶瓷纳米纤维气凝胶,该气凝胶同时具有超强、超弹性和耐高温性能。所得的ZrO-AlO纳米纤维气凝胶具有从90%的应变中快速恢复、超过1100 kPa的高压缩强度(在90%应变下)、高抗疲劳性和温度不变的超弹性等综合性能。此外,全陶瓷成分的特性还使陶瓷纳米纤维气凝胶具有高达1300°C的耐高温性和低导热率(0.0322 W m K)的隔热性能。这些优异性能使陶瓷气凝胶成为极端条件下高温隔热材料的理想选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验