Suppr超能文献

通过神经计算优化造粒-解粒机制。

Optimization of Granulation-Degranulation Mechanism Through Neurocomputing.

出版信息

IEEE Trans Cybern. 2022 Jun;52(6):4126-4135. doi: 10.1109/TCYB.2020.3021004. Epub 2022 Jun 16.

Abstract

Information granulation and degranulation play a fundamental role in granular computing (GrC). Given a collection of information granules (referred to as reference information granules), the essence of the granulation process (encoding) is to represent each data (either numeric or granular) in terms of these reference information granules. The degranulation process (decoding) that realizes the reconstruction of original data is associated with a certain level of reconstruction error. An important issue is how to reduce the reconstruction error such that the data could be reconstructed more accurately. In this study, the granulation process is realized by involving fuzzy clustering. A novel neural network is leveraged in the consecutive degranulation process, which could help significantly reduce the reconstruction error. We show that the proposed degranulation architecture exhibits improved capabilities in reconstructing original data in comparison with other methods. A series of experiments with the use of synthetic data and publicly available datasets coming from the machine-learning repository demonstrates the superiority of the proposed method over some existing alternatives.

摘要

信息粒化和去粒化在粒计算(GrC)中起着基本作用。给定一组信息粒(称为参考信息粒),粒化过程(编码)的本质是根据这些参考信息粒来表示每个数据(数字或粒状)。实现原始数据重构的去粒化过程(解码)与一定程度的重构误差相关联。一个重要的问题是如何减少重构误差,以使数据能够更准确地重构。在本研究中,粒化过程通过涉及模糊聚类来实现。在连续的去粒化过程中利用了一种新的神经网络,可以帮助显著减少重构误差。我们表明,与其他方法相比,所提出的去粒化架构在重构原始数据方面具有更好的能力。使用来自机器学习存储库的合成数据和公开可用数据集进行的一系列实验表明,该方法优于一些现有替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验