Psychology Department, University of Montréal, QC, Canada.
Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, 13385 Marseille, France.
PLoS Comput Biol. 2020 Oct 29;16(10):e1008302. doi: 10.1371/journal.pcbi.1008302. eCollection 2020 Oct.
Despite being the focus of a thriving field of research, the biological mechanisms that underlie information integration in the brain are not yet fully understood. A theory that has gained a lot of traction in recent years suggests that multi-scale integration is regulated by a hierarchy of mutually interacting neural oscillations. In particular, there is accumulating evidence that phase-amplitude coupling (PAC), a specific form of cross-frequency interaction, plays a key role in numerous cognitive processes. Current research in the field is not only hampered by the absence of a gold standard for PAC analysis, but also by the computational costs of running exhaustive computations on large and high-dimensional electrophysiological brain signals. In addition, various signal properties and analyses parameters can lead to spurious PAC. Here, we present Tensorpac, an open-source Python toolbox dedicated to PAC analysis of neurophysiological data. The advantages of Tensorpac include (1) higher computational efficiency thanks to software design that combines tensor computations and parallel computing, (2) the implementation of all most widely used PAC methods in one package, (3) the statistical analysis of PAC measures, and (4) extended PAC visualization capabilities. Tensorpac is distributed under a BSD-3-Clause license and can be launched on any operating system (Linux, OSX and Windows). It can be installed directly via pip or downloaded from Github (https://github.com/EtienneCmb/tensorpac). By making Tensorpac available, we aim to enhance the reproducibility and quality of PAC research, and provide open tools that will accelerate future method development in neuroscience.
尽管信息整合的生物学机制是一个蓬勃发展的研究领域的焦点,但目前仍未完全理解。近年来,一种理论得到了广泛关注,该理论认为多尺度整合受相互作用的神经振荡层次结构的调节。特别是,越来越多的证据表明,相位-振幅耦合(PAC)是一种特定形式的跨频相互作用,在许多认知过程中起着关键作用。目前该领域的研究不仅受到缺乏 PAC 分析的黄金标准的限制,还受到在大型高维脑电生理信号上进行详尽计算的计算成本的限制。此外,各种信号特性和分析参数都可能导致虚假的 PAC。在这里,我们提出了 Tensorpac,这是一个专门用于神经生理学数据 PAC 分析的开源 Python 工具包。Tensorpac 的优势包括:(1)得益于结合张量计算和并行计算的软件设计,具有更高的计算效率;(2)在一个包中实现了所有最广泛使用的 PAC 方法;(3)PAC 测量的统计分析;(4)扩展的 PAC 可视化功能。Tensorpac 基于 BSD-3-Clause 许可证分发,可以在任何操作系统(Linux、OSX 和 Windows)上运行。它可以通过 pip 直接安装,也可以从 Github 下载(https://github.com/EtienneCmb/tensorpac)。通过提供 Tensorpac,我们旨在提高 PAC 研究的可重复性和质量,并提供开放的工具,以加速神经科学领域未来的方法发展。