College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China.
Math Biosci Eng. 2020 Jul 31;17(5):5134-5146. doi: 10.3934/mbe.2020277.
Baló's concentric sclerosis (BCS) is considered a variant of inflammatory demyelinating disease closely related to multiple sclerosis characterized by a discrete concentrically layered lesion in the cerebal white matter. Khonsari and Calvez (Plos ONE. 2(2007)) proposed a parabolic-elliptic-ODE chemotaxis model for BCS which describes the evolution of the densities of activated macrophages, cytokine and apoptotic oligodendrocytes. Because "classically activated" M1 microglia can produce cytotoxicity, we introduce a linear production term from the activated microglia in the ODE for pro-inflammatory cytotoxic. For the new BCS chemotaxis model, we first investigate the uniform boundedness and global existence of classical solutions, and then get a range of the chemosensitive rate χ where the unique positive equilibrium point is exponentially asymptotically stable.
巴洛氏同心性硬化症(BCS)被认为是一种炎症性脱髓鞘疾病的变体,与多发性硬化症密切相关,其特征是大脑白质中存在离散的同心层状病变。Khonsari 和 Calvez(《公共科学图书馆·综合》。2(2007 年))提出了一个抛物线-椭圆-ODE 趋化模型来描述 BCS 的发展,该模型描述了激活的巨噬细胞、细胞因子和凋亡的少突胶质细胞的密度变化。由于“经典激活”的 M1 小胶质细胞可以产生细胞毒性,我们在促炎细胞毒性的 ODE 中引入了一个来自激活小胶质细胞的线性产生项。对于新的 BCS 趋化模型,我们首先研究了经典解的一致有界性和全局存在性,然后得到了一个趋化敏感率 χ 的范围,在这个范围内,唯一的正平衡点是指数渐近稳定的。