Suppr超能文献

多发性硬化症数学模型中的脱髓鞘模式

Demyelination patterns in a mathematical model of multiple sclerosis.

作者信息

Lombardo M C, Barresi R, Bilotta E, Gargano F, Pantano P, Sammartino M

机构信息

Department of Mathematics, University of Palermo, Via Archirafi 34, 90123, Palermo, Italy.

Department of Physics, University of Calabria, Via Pietro Bucci, 87036, Rende, CS, Italy.

出版信息

J Math Biol. 2017 Aug;75(2):373-417. doi: 10.1007/s00285-016-1087-0. Epub 2016 Dec 30.

Abstract

In this paper we derive a reaction-diffusion-chemotaxis model for the dynamics of multiple sclerosis. We focus on the early inflammatory phase of the disease characterized by activated local microglia, with the recruitment of a systemically activated immune response, and by oligodendrocyte apoptosis. The model consists of three equations describing the evolution of macrophages, cytokine and apoptotic oligodendrocytes. The main driving mechanism is the chemotactic motion of macrophages in response to a chemical gradient provided by the cytokines. Our model generalizes the system proposed by Calvez and Khonsari (Math Comput Model 47(7-8):726-742, 2008) and Khonsari and Calvez (PLos ONE 2(1):e150, 2007) to describe Baló's sclerosis, a rare and aggressive form of multiple sclerosis. We use a combination of analytical and numerical approaches to show the formation of different demyelinating patterns. In particular, a Turing instability analysis demonstrates the existence of a threshold value for the chemotactic coefficient above which stationary structures develop. In the case of subcritical transition to the patterned state, the numerical investigations performed on a 1-dimensional domain show the existence, far from the bifurcation, of complex spatio-temporal dynamics coexisting with the Turing pattern. On a 2-dimensional domain the proposed model supports the emergence of different demyelination patterns: localized areas of apoptotic oligodendrocytes, which closely fit existing MRI findings on the active MS lesion during acute relapses; concentric rings, typical of Baló's sclerosis; small clusters of activated microglia in absence of oligodendrocytes apoptosis, observed in the pathology of preactive lesions.

摘要

在本文中,我们推导了一个用于描述多发性硬化症动态变化的反应 - 扩散 - 趋化模型。我们聚焦于该疾病的早期炎症阶段,其特征为局部小胶质细胞活化、全身性活化免疫反应的募集以及少突胶质细胞凋亡。该模型由三个方程组成,分别描述巨噬细胞、细胞因子和凋亡少突胶质细胞的演化。主要驱动机制是巨噬细胞响应细胞因子提供的化学梯度而进行的趋化运动。我们的模型推广了卡尔维兹和孔萨里(《数学与计算机模拟》47(7 - 8):726 - 742,2008年)以及孔萨里和卡尔维兹(《公共科学图书馆·综合》2(1):e150,2007年)提出的用于描述巴洛硬化症(一种罕见且侵袭性的多发性硬化症形式)的系统。我们使用解析和数值方法相结合的方式来展示不同脱髓鞘模式的形成。特别地,图灵不稳定性分析表明趋化系数存在一个阈值,高于该阈值时会形成稳定结构。在向图案化状态的亚临界转变情况下,在一维域上进行的数值研究表明,在远离分岔处存在与图灵模式共存的复杂时空动态。在二维域上,所提出的模型支持不同脱髓鞘模式的出现:凋亡少突胶质细胞的局部区域,这与急性复发期间活动性多发性硬化症病变的现有磁共振成像结果紧密相符;同心环,这是巴洛硬化症的典型特征;在无少突胶质细胞凋亡情况下观察到的活化小胶质细胞小簇,这在活动前病变的病理学中可见。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验