Suppr超能文献

利用机器学习对Lenke 5型青少年特发性脊柱侧弯患者后路脊柱侧弯手术后近端交界性后凸进行预测

Prediction of Proximal Junctional Kyphosis After Posterior Scoliosis Surgery With Machine Learning in the Lenke 5 Adolescent Idiopathic Scoliosis Patient.

作者信息

Peng Li, Lan Lan, Xiu Peng, Zhang Guangming, Hu Bowen, Yang Xi, Song Yueming, Yang Xiaoyan, Gu Yonghong, Yang Rui, Zhou Xiaobo

机构信息

West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.

Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Front Bioeng Biotechnol. 2020 Oct 6;8:559387. doi: 10.3389/fbioe.2020.559387. eCollection 2020.

Abstract

OBJECTIVE

To build a model for proximal junctional kyphosis (PJK) prognostication in Lenke 5 adolescent idiopathic scoliosis (AIS) patients undergoing long posterior instrumentation and fusion surgery by machine learning and analyze the risk factors for PJK.

MATERIALS AND METHODS

In total, 44 AIS patients (female/male: 34/10; PJK/non-PJK: 34/10) who met the inclusion criteria between January 2013 and December 2018 were retrospectively recruited from West China Hospital. Thirty-seven clinical and radiological features were acquired by two independent investigators. Univariate analyses between PJK and non-PJK groups were carried out. Twelve models were built by using four types of machine learning algorithms in conjunction with two oversampling methods [the synthetic minority technique (SMOTE) and random oversampling]. Area under the receiver operating characteristic curve (AUC) was used for model discrimination, and the clinical utility was evaluated by using F1 score and accuracy. The risk factors were simultaneously analyzed by a Cox regression and machine learning.

RESULTS

Statistical differences between PJK and non-PJK groups were as follows: gender ( = 0.001), preoperative factors [thoracic kyphosis ( = 0.03), T1 slope angle (T1S, = 0.078)], and postoperative factors [T1S ( = 0.097), proximal junctional angle ( = 0.003), upper instrumented vertebra (UIV) - UIV + 1 ( = 0.001)]. Random forest using SMOTE achieved the best prediction performance with AUC = 0.944, accuracy = 0.909, and F1 score = 0.667 on independent testing dataset. Cox model revealed that male gender and larger preoperative T1S were independent prognostic factors of PJK (odds ratio = 10.701 and 57.074, respectively). Gender was also at the first place in the importance ranking of the model with best performance.

CONCLUSION

The random forest using SMOTE model has the great value for predicting the individual risk of developing PJK after long instrumentation and fusion surgery in Lenke 5 AIS patients. Moreover, the combination of the outcomes of a Cox model and the feature ranking extracted by machine learning is more valuable than any one alone, especially in the interpretation of risk factors.

摘要

目的

通过机器学习建立一个预测接受后路长节段内固定融合手术的Lenke 5型青少年特发性脊柱侧凸(AIS)患者近端交界性后凸(PJK)的模型,并分析PJK的危险因素。

材料与方法

回顾性纳入2013年1月至2018年12月期间在华西医院符合纳入标准的44例AIS患者(女性/男性:34/10;PJK/非PJK:34/10)。由两名独立研究人员获取37项临床和影像学特征。对PJK组和非PJK组进行单因素分析。使用四种机器学习算法结合两种过采样方法[合成少数过采样技术(SMOTE)和随机过采样]建立12个模型。采用受试者操作特征曲线下面积(AUC)评估模型的区分能力,使用F1评分和准确率评估临床实用性。通过Cox回归和机器学习同时分析危险因素。

结果

PJK组和非PJK组之间的统计学差异如下:性别(P = 0.001)、术前因素[胸椎后凸(P = 0.03)、T1斜率角(T1S,P = 0.078)]和术后因素[T1S(P = 0.097)、近端交界角(P = 0.003)、上固定椎(UIV)-UIV + 1(P = 0.001)]。在独立测试数据集上,使用SMOTE的随机森林模型具有最佳预测性能,AUC = 0.944,准确率 = 0.909,F1评分 = 0.667。Cox模型显示男性性别和术前较大的T1S是PJK的独立预后因素(比值比分别为10.701和57.074)。在性能最佳的模型的重要性排名中,性别也位居首位。

结论

使用SMOTE的随机森林模型对于预测Lenke 5型AIS患者后路长节段内固定融合手术后发生PJK的个体风险具有重要价值。此外,Cox模型的结果与机器学习提取的特征排名相结合比单独任何一个都更有价值,尤其是在危险因素的解释方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b56/7573316/d489c716c928/fbioe-08-559387-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验