Zheng Bin, Zhu Zhenqi, Liang Yan, Guo Chen, Liu Haiying
Spine Surgery, Peking University People's Hospital, Beijing, China.
Front Pediatr. 2025 Aug 13;13:1531827. doi: 10.3389/fped.2025.1531827. eCollection 2025.
This bibliometric analysis aimed to map the knowledge network of artificial intelligence in scoliosis.
Studies on artificial intelligence published from January 2003 to December 2024 are retrieved from Web of Science Core Collection (WoSCC). The contributions of countries, institutions, authors, and journals are identified using VOSviewer, Online Analysis Platform of Literature Metrology (http://biblimetric.com) and Microsoft Excel. Tendencies, hotspots and knowledge networks are analyzed and visualized using VOS-viewer and CiteSpace.
718 publications are included in the final analysis. The leading country in this field is China. Royal Hospital for Sick Children featured the highest number of publications among all institutions and National University of Singapore featured the highest citations of publications. Co-citation cluster labels revealed characteristics of three main clusters: (1) Image process and classification of scoliosis, (2) AI application in surgical treatment of scoliosis, (3) predict postoperative complications and scoliosis development. Keyword burst detection indicated that machine learning and deep learning are the newly emerging research hot spots.
This study compiled 718 publications covering AI in scoliosis and showed that the direction of these studies is likely in transition from cerebral palsy to machine learning and deep learning. It provides guidance for further research and clinical applications on AI application in scoliosis.
本文献计量分析旨在绘制脊柱侧弯人工智能知识网络。
从科学网核心合集(WoSCC)中检索2003年1月至2024年12月发表的关于人工智能的研究。使用VOSviewer、文献计量在线分析平台(http://biblimetric.com)和微软Excel确定国家、机构、作者和期刊的贡献。使用VOSviewer和CiteSpace分析并可视化趋势、热点和知识网络。
最终分析纳入718篇出版物。该领域领先国家是中国。在所有机构中,皇家儿童医院的出版物数量最多,新加坡国立大学的出版物被引次数最高。共被引聚类标签揭示了三个主要聚类的特征:(1)脊柱侧弯的图像处理与分类,(2)人工智能在脊柱侧弯手术治疗中的应用,(3)预测术后并发症和脊柱侧弯发展。关键词突现检测表明机器学习和深度学习是新出现的研究热点。
本研究汇编了718篇关于脊柱侧弯人工智能的出版物,表明这些研究方向可能正从脑瘫转向机器学习和深度学习。它为脊柱侧弯人工智能应用的进一步研究和临床应用提供了指导。