Suppr超能文献

通过组合抗体功能化微流控协同芯片高效分离循环肝癌细胞并进行表型分析

Efficient Isolation and Phenotypic Profiling of Circulating Hepatocellular Carcinoma Cells via a Combinatorial-Antibody-Functionalized Microfluidic Synergetic-Chip.

作者信息

Zhu Lin, Lin Huibin, Wan Shuang, Chen Xiaofeng, Wu Lingling, Zhu Zhi, Song Yanling, Hu Bin, Yang Chaoyong

机构信息

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.

出版信息

Anal Chem. 2020 Nov 17;92(22):15229-15235. doi: 10.1021/acs.analchem.0c03936. Epub 2020 Oct 30.

Abstract

As a malignant disease that seriously threatens human health, hepatocellular carcinoma (HCC) lacks effective early screening and prognostic assessment methods. Herein, we developed a method for efficient capture and multiphenotype analysis of circulating tumor cells (CTCs) of hepatocellular carcinoma. The anti-ASGPR antibody and the anti-EpCAM antibody were modified in parallel on a deterministic lateral displacement (DLD)-patterned microfluidic Synergetic-Chip to enhance capture efficiency by a complementary effect. CTCs were detected in 45 out of 45 (100%) HCC patients, with a sensitivity and specificity of 97.8 and 100%, respectively. Patients with more total CTCs and nonepithelial CTCs were in later stages of HCC and had more malignant progression. This strategy proposes a feasible approach for early diagnosis and prognosis of hepatocellular carcinoma.

摘要

作为一种严重威胁人类健康的恶性疾病,肝细胞癌(HCC)缺乏有效的早期筛查和预后评估方法。在此,我们开发了一种用于高效捕获和多表型分析肝细胞癌循环肿瘤细胞(CTC)的方法。抗去唾液酸糖蛋白受体(ASGPR)抗体和抗上皮细胞黏附分子(EpCAM)抗体在确定性侧向位移(DLD)图案化的微流控协同芯片上并行修饰,以通过互补效应提高捕获效率。45例肝细胞癌患者中45例(100%)检测到循环肿瘤细胞,灵敏度和特异性分别为97.8%和100%。总循环肿瘤细胞和非上皮循环肿瘤细胞较多的患者处于肝细胞癌晚期,且有更多的恶性进展。该策略为肝细胞癌的早期诊断和预后提出了一种可行的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验