Suppr超能文献

3D 打印微流控芯片用于循环肿瘤细胞(CTCs)的分离。

3D printed microfluidic devices for circulating tumor cells (CTCs) isolation.

机构信息

Department of Mechanical Engineering, University of California, Berkeley, USA; Berkeley Sensor and Actuators Center, USA; Department of Biological Systems Engineering, Virginia Tech, USA; Hangzhou Institute of Advanced Transducing Technology, Wahaha R&D Academe, Hangzhou, China.

School of Optometry and Vision Science Program, University of California, Berkeley, USA; Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan.

出版信息

Biosens Bioelectron. 2020 Feb 15;150:111900. doi: 10.1016/j.bios.2019.111900. Epub 2019 Nov 16.

Abstract

Isolation of circulating tumor cells (CTCs) from blood samples has important prognostic and therapeutic implications for cancer treatments, but the process is very challenging due to the low concentration of CTCs. In this study, we report a novel 3D printed microfluidic device functionalized with anti-EpCAM (epithelial cell adhesion molecule) antibodies to isolate CTCs from human blood samples. A 3D printing technology was utilized with specially designed interior structures to fabricate a microfluidic device with high surface area and fluid flow manipulation, increasing capture efficiency of tumor cells. These devices with the optimal flow rate (1 mL/h) and channel length (2 cm) were demonstrated to test three kinds of EpCAM positive cancer cell lines (MCF-7 breast cancer, SW480 colon cancer, and PC3 prostate cancer), and one kind of EpCAM negative cancer cell line (293T kidney cancer). Experimentally, the capture efficiency higher than 90% has been achieved, and the isolation of MCF-7 tumor cells from spiked human blood samples has also been demonstrated. Combined with DNA-based detection (e.g. polymerase chain reaction or DNA sequencing), the detection and analysis of released DNAs from captured tumor cells could be another future direction for clinical diagnosis and cancer treatment.

摘要

从血液样本中分离循环肿瘤细胞 (CTCs) 对癌症治疗具有重要的预后和治疗意义,但由于 CTCs 的浓度很低,因此该过程极具挑战性。在这项研究中,我们报告了一种新型的 3D 打印微流控装置,该装置用抗上皮细胞黏附分子 (EpCAM) 抗体功能化,用于从人血样中分离 CTCs。使用专门设计的内部结构的 3D 打印技术制造了一种具有高表面积和流体流动控制的微流控装置,提高了肿瘤细胞的捕获效率。这些具有最佳流速 (1 mL/h) 和通道长度 (2 cm) 的设备已被证明可用于测试三种 EpCAM 阳性癌细胞系 (乳腺癌 MCF-7、结肠癌 SW480 和前列腺癌 PC3) 和一种 EpCAM 阴性癌细胞系 (肾癌细胞 293T)。实验中,捕获效率高于 90%,并且已经证明可以从掺杂的人血样中分离 MCF-7 肿瘤细胞。结合基于 DNA 的检测(例如聚合酶链反应或 DNA 测序),从捕获的肿瘤细胞中释放的 DNA 的检测和分析可能是临床诊断和癌症治疗的另一个未来方向。

相似文献

引用本文的文献

3
3D-Printed Polymeric Biomaterials for Health Applications.用于健康应用的3D打印聚合物生物材料。
Adv Healthc Mater. 2025 Jan;14(1):e2402571. doi: 10.1002/adhm.202402571. Epub 2024 Nov 5.
5
Microfluidic Applications in Prostate Cancer Research.微流控技术在前列腺癌研究中的应用
Micromachines (Basel). 2024 Sep 27;15(10):1195. doi: 10.3390/mi15101195.
7
Bioprinted research models of urological malignancy.泌尿外科恶性肿瘤的生物打印研究模型
Exploration (Beijing). 2024 Feb 20;4(4):20230126. doi: 10.1002/EXP.20230126. eCollection 2024 Aug.
10

本文引用的文献

2
Point-of-care testing: applications of 3D printing.即时检验:3D 打印的应用。
Lab Chip. 2017 Aug 8;17(16):2713-2739. doi: 10.1039/c7lc00397h.
10
The upcoming 3D-printing revolution in microfluidics.微流控领域即将到来的 3D 打印革命。
Lab Chip. 2016 May 21;16(10):1720-42. doi: 10.1039/c6lc00163g. Epub 2016 Apr 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验