Department of Statistics and Analytical Sciences, Kennesaw State University, Kennesaw, GA, USA.
Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
BMC Bioinformatics. 2020 Oct 30;21(1):488. doi: 10.1186/s12859-020-03803-z.
BACKGROUND: Microbiome/metagenomic data have specific characteristics, including varying total sequence reads, over-dispersion, and zero-inflation, which require tailored analytic tools. Many microbiome/metagenomic studies follow a longitudinal design to collect samples, which further complicates the analysis methods needed. A flexible and efficient R package is needed for analyzing processed multilevel or longitudinal microbiome/metagenomic data. RESULTS: NBZIMM is a freely available R package that provides functions for setting up and fitting negative binomial mixed models, zero-inflated negative binomial mixed models, and zero-inflated Gaussian mixed models. It also provides functions to summarize the results from fitted models, both numerically and graphically. The main functions are built on top of the commonly used R packages nlme and MASS, allowing us to incorporate the well-developed analytic procedures into the framework for analyzing over-dispersed and zero-inflated count or proportion data with multilevel structures (e.g., longitudinal studies). The statistical methods and their implementations in NBZIMM particularly address the data characteristics and the complex designs in microbiome/metagenomic studies. The package is freely available from the public GitHub repository https://github.com/nyiuab/NBZIMM . CONCLUSION: The NBZIMM package provides useful tools for complex microbiome/metagenomics data analysis.
背景:微生物组/宏基因组数据具有特定的特征,包括不同的总测序reads、过分散和零膨胀,这需要定制的分析工具。许多微生物组/宏基因组研究采用纵向设计来收集样本,这进一步增加了所需分析方法的复杂性。需要一个灵活高效的 R 包来分析处理后的多层次或纵向微生物组/宏基因组数据。
结果:NBZIMM 是一个免费提供的 R 包,它提供了用于设置和拟合负二项式混合模型、零膨胀负二项式混合模型和零膨胀高斯混合模型的功能。它还提供了用于总结拟合模型结果的功能,包括数值和图形。主要功能建立在常用的 R 包 nlme 和 MASS 之上,使我们能够将成熟的分析程序纳入分析具有多层次结构(例如,纵向研究)的过分散和零膨胀计数或比例数据的框架中。NBZIMM 中的统计方法及其实现特别针对微生物组/宏基因组研究中的数据特征和复杂设计。该软件包可从公共 GitHub 存储库 https://github.com/nyiuab/NBZIMM 上免费获得。
结论:NBZIMM 包为复杂的微生物组/宏基因组数据分析提供了有用的工具。
BMC Bioinformatics. 2020-10-30
Front Microbiol. 2018-7-26
BMC Bioinformatics. 2017-1-3
Bioinformatics. 2018-2-15
Stat Methods Med Res. 2022-10
G3 (Bethesda). 2021-4-15
NPJ Biofilms Microbiomes. 2025-7-21
BMC Infect Dis. 2025-4-5
Front Microbiol. 2018-7-26
Nat Methods. 2017-10-31
BMC Bioinformatics. 2017-1-3
Bioinformatics. 2016-9-1
Front Microbiol. 2016-4-20