Suppr超能文献

基于网络的机器学习在结直肠和膀胱类器官模型中预测患者的抗癌药物疗效。

Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients.

机构信息

Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea.

Institute of Convergence Science, Yonsei University, Seoul, 120-749, Korea.

出版信息

Nat Commun. 2020 Oct 30;11(1):5485. doi: 10.1038/s41467-020-19313-8.

Abstract

Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. However, current machine-learning-based predictions of drug response often fail to identify robust translational biomarkers from preclinical models. Here, we present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data derived from three-dimensional organoid culture models. The biomarkers identified by our approach accurately predict the drug responses of 114 colorectal cancer patients treated with 5-fluorouracil and 77 bladder cancer patients treated with cisplatin. We further confirm our biomarkers using external transcriptomic datasets of drug-sensitive and -resistant isogenic cancer cell lines. Finally, concordance analysis between the transcriptomic biomarkers and independent somatic mutation-based biomarkers further validate our method. This work presents a method to predict cancer patient drug responses using pharmacogenomic data derived from organoid models by combining the application of gene modules and network-based approaches.

摘要

利用预测性生物标志物对癌症患者进行分类,以预测抗癌药物的反应,这对于改善治疗效果至关重要。然而,目前基于机器学习的药物反应预测方法往往无法从临床前模型中识别出稳健的转化生物标志物。在这里,我们提出了一种机器学习框架,利用基于网络的分析方法,利用从三维类器官培养模型中获得的药物基因组学数据,来识别稳健的药物生物标志物。我们的方法所识别的生物标志物可以准确预测 114 名接受氟尿嘧啶治疗的结直肠癌患者和 77 名接受顺铂治疗的膀胱癌患者的药物反应。我们还使用药物敏感和耐药同基因癌细胞系的外部转录组数据集进一步验证了我们的生物标志物。最后,转录组生物标志物和独立的基于体细胞突变的生物标志物之间的一致性分析进一步验证了我们的方法。这项工作提出了一种使用源自类器官模型的药物基因组学数据预测癌症患者药物反应的方法,该方法结合了基因模块和基于网络的方法的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98fa/7599252/76c3b50f3e1c/41467_2020_19313_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验