Caminero Alberto, Tropini Carolina, Valles-Colomer Mireia, Shung Dennis L, Gibbons Sean M, Surette Michael G, Sokol Harry, Tomeo Nicholas J, Tarr Phillip I, Verdu Elena F
Department of Medicine, Farncombe Family Digestive Disease Research Institute, McMaster University, Hamilton, Ontario, Canada.
School of Biomedical Engineering, Department of Microbiology and Immunology, University of British Columbia, Canada Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
Nat Rev Gastroenterol Hepatol. 2025 Jul 31. doi: 10.1038/s41575-025-01100-9.
The microbiome has critical roles in human health and disease. Advances in high-throughput sequencing and metabolomics have revolutionized our understanding of human gut microbial communities and identified plausible associations with a variety of disorders. However, microbiome research remains constrained by challenges in establishing causality, an over-reliance on correlative studies, and methodological and analytical limitations. Artificial intelligence (AI) has emerged as a powerful tool to address these challenges; however, the seamless integration of preclinical models and clinical trials is crucial to maximizing the translational impact of microbiome studies. This manuscript critically evaluates best methodological practices and limitations in the field, focusing on how emerging AI tools can bridge the gap between microbial insights and clinical applications. Specifically, we emphasize the necessity of rigorous, reproducible methodologies that integrate multiomics approaches, preclinical models and clinical trials in the AI-driven era. We propose a practical framework for applying AI to microbiome studies, alongside strategic recommendations for clinical trial design, regulatory pathways, and best practices for microbiome-based informed diagnostics, AI training and clinical interventions. By establishing these guidelines, we aim to accelerate the translation of microbiome research into clinical practice, enabling precision medicine approaches informed by the human microbiome.
微生物组在人类健康与疾病中发挥着关键作用。高通量测序和代谢组学的进展彻底改变了我们对人类肠道微生物群落的理解,并确定了与多种疾病可能存在的关联。然而,微生物组研究仍受到诸多挑战的限制,包括建立因果关系的困难、对相关性研究的过度依赖以及方法学和分析方面的局限性。人工智能(AI)已成为应对这些挑战的强大工具;然而,临床前模型与临床试验的无缝整合对于最大化微生物组研究的转化影响至关重要。本手稿批判性地评估了该领域的最佳方法学实践和局限性,重点关注新兴的人工智能工具如何弥合微生物见解与临床应用之间的差距。具体而言,我们强调在人工智能驱动的时代,采用严谨、可重复的方法学,整合多组学方法、临床前模型和临床试验的必要性。我们提出了一个将人工智能应用于微生物组研究的实用框架,以及关于临床试验设计、监管途径的战略建议,以及基于微生物组的知情诊断、人工智能训练和临床干预的最佳实践。通过制定这些指南,我们旨在加速微生物组研究向临床实践的转化,实现基于人类微生物组的精准医学方法。