Université de Paris, INSERM, IAME, F-75006, Paris, France.
Univ. Lille, CNRS, UMR 819 8 -Evo-Eco-Paleo, F-59000, Lille, France.
Heredity (Edinb). 2021 Feb;126(2):335-350. doi: 10.1038/s41437-020-00381-x. Epub 2020 Oct 30.
Genetic data are often used to infer demographic history and changes or detect genes under selection. Inferential methods are commonly based on models making various strong assumptions: demography and population structures are supposed a priori known, the evolution of the genetic composition of a population does not affect demography nor population structure, and there is no selection nor interaction between and within genetic strains. In this paper, we present a stochastic birth-death model with competitive interactions and asexual reproduction. We develop an inferential procedure for ecological, demographic, and genetic parameters. We first show how genetic diversity and genealogies are related to birth and death rates, and to how individuals compete within and between strains. This leads us to propose an original model of phylogenies, with trait structure and interactions, that allows multiple merging. Second, we develop an Approximate Bayesian Computation framework to use our model for analyzing genetic data. We apply our procedure to simulated data from a toy model, and to real data by analyzing the genetic diversity of microsatellites on Y-chromosomes sampled from Central Asia human populations in order to test whether different social organizations show significantly different fertilities.
遗传数据通常用于推断人口历史和变化,或检测受选择影响的基因。推理方法通常基于各种强假设的模型:人口统计学和群体结构应该事先已知,群体遗传组成的演化既不影响人口统计学,也不影响群体结构,也不存在选择或遗传菌株之间和内部的相互作用。在本文中,我们提出了一个具有竞争相互作用和无性繁殖的随机出生-死亡模型。我们为生态、人口统计学和遗传参数开发了一种推理程序。我们首先展示了遗传多样性和系统发育与出生率和死亡率以及个体在菌株内部和之间竞争的关系。这使我们提出了一种具有特征结构和相互作用的原始系统发育模型,允许多次合并。其次,我们开发了一个近似贝叶斯计算框架,以便使用我们的模型分析遗传数据。我们通过从中亚人类群体中采样的 Y 染色体微卫星的遗传多样性来分析模拟数据和真实数据,以检验不同的社会组织是否表现出明显不同的生育率。