Suppr超能文献

基于连续系谱的种群大小变化的贝叶斯非参数推断

Bayesian Nonparametric Inference of Population Size Changes from Sequential Genealogies.

作者信息

Palacios Julia A, Wakeley John, Ramachandran Sohini

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.

出版信息

Genetics. 2015 Sep;201(1):281-304. doi: 10.1534/genetics.115.177980. Epub 2015 Jul 28.

Abstract

Sophisticated inferential tools coupled with the coalescent model have recently emerged for estimating past population sizes from genomic data. Recent methods that model recombination require small sample sizes, make constraining assumptions about population size changes, and do not report measures of uncertainty for estimates. Here, we develop a Gaussian process-based Bayesian nonparametric method coupled with a sequentially Markov coalescent model that allows accurate inference of population sizes over time from a set of genealogies. In contrast to current methods, our approach considers a broad class of recombination events, including those that do not change local genealogies. We show that our method outperforms recent likelihood-based methods that rely on discretization of the parameter space. We illustrate the application of our method to multiple demographic histories, including population bottlenecks and exponential growth. In simulation, our Bayesian approach produces point estimates four times more accurate than maximum-likelihood estimation (based on the sum of absolute differences between the truth and the estimated values). Further, our method's credible intervals for population size as a function of time cover 90% of true values across multiple demographic scenarios, enabling formal hypothesis testing about population size differences over time. Using genealogies estimated with ARGweaver, we apply our method to European and Yoruban samples from the 1000 Genomes Project and confirm key known aspects of population size history over the past 150,000 years.

摘要

复杂的推理工具与合并模型相结合,最近已出现用于从基因组数据估计过去的种群大小。最近对重组进行建模的方法需要小样本量,对种群大小变化做出约束性假设,并且不报告估计值的不确定性度量。在这里,我们开发了一种基于高斯过程的贝叶斯非参数方法,并结合了顺序马尔可夫合并模型,该模型允许从一组系谱中准确推断种群大小随时间的变化。与当前方法不同,我们的方法考虑了广泛的重组事件类别,包括那些不会改变局部系谱的事件。我们表明,我们的方法优于最近依赖于参数空间离散化的基于似然的方法。我们说明了我们的方法在多种人口统计历史中的应用,包括种群瓶颈和指数增长。在模拟中,我们的贝叶斯方法产生的点估计比最大似然估计(基于真实值与估计值之间的绝对差之和)精确四倍。此外,我们的方法作为时间函数的种群大小可信区间在多种人口统计场景中覆盖了90%的真实值,从而能够对种群大小随时间的差异进行正式的假设检验。使用ARGweaver估计的系谱,我们将我们的方法应用于千人基因组计划中的欧洲和约鲁巴样本,并确认了过去15万年种群大小历史的关键已知方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a09d/4566269/78c0fd63c9ff/281fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验