文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MRI 的组织学验证:成像与全器官组织病理学配准中挑战的综述。

Histological Validation of MRI: A Review of Challenges in Registration of Imaging and Whole-Mount Histopathology.

机构信息

Discipline of Medical Imaging Science, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.

Discipline of Medical Imaging Science, Faculty of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.

出版信息

J Magn Reson Imaging. 2022 Jan;55(1):11-22. doi: 10.1002/jmri.27409. Epub 2020 Oct 31.


DOI:10.1002/jmri.27409
PMID:33128424
Abstract

Rigorous validation with ground truth information such as histology is needed to reliably assess the current and potential value of MRI techniques to characterize tissue and identify disease-related tissue alterations. Commonly used methods that aim to directly correlate histology and MRI data generally fall short of this goal due to spatial errors that preclude direct matching. Errors result from tissue deformation, differences in spatial resolution and slice thickness, non-coplanar and/or nonintersecting plane orientations, and different image contrast mechanisms. Some of these problems arise from limitations in standard protocols for clinical tissue processing and histology-based pathology reporting, and to some extent can be addressed by modifications to standard protocols without compromising the clinical process. Typical modifications include ex vivo specimen MRI, block-face photography, addition of fiducial markers, and 3D printed molds to constrain tissue deformation and guide sectioning. This review summarizes the advantages and limitations of MRI validation techniques based on coregistration of MRI with whole-mount histology of tissue specimens. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 1.

摘要

需要使用组织学等真实信息进行严格验证,以可靠地评估 MRI 技术在组织特征分析和疾病相关组织改变识别方面的当前和潜在价值。通常用于直接关联组织学和 MRI 数据的方法,由于空间误差而无法直接匹配,因此无法实现这一目标。这些误差源于组织变形、空间分辨率和切片厚度的差异、非共面和/或不相交的平面方向以及不同的图像对比机制。其中一些问题源于临床组织处理和基于组织学的病理学报告标准方案的局限性,并且在一定程度上可以通过修改标准方案来解决,而不会影响临床流程。典型的修改包括离体标本 MRI、块面摄影、添加基准标记和 3D 打印模具以约束组织变形和引导切片。这篇综述总结了基于组织标本全切片组织学与 MRI 配准的 MRI 验证技术的优缺点。证据水平:4 技术效能分期:1。

相似文献

[1]
Histological Validation of MRI: A Review of Challenges in Registration of Imaging and Whole-Mount Histopathology.

J Magn Reson Imaging. 2022-1

[2]
Technical Note: Method to correlate whole-specimen histopathology of radical prostatectomy with diagnostic MR imaging.

Med Phys. 2016-3

[3]
Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model.

Med Phys. 2015-8

[4]
Registration methodology for histological sections and in vivo imaging of human prostate.

Acad Radiol. 2008-8

[5]
Technical Note: Histological validation of anatomical imaging for breast modeling using a novel cryo-microtome.

Med Phys. 2021-11

[6]
A system using patient-specific 3D-printed molds to spatially align in vivo MRI with ex vivo MRI and whole-mount histopathology for prostate cancer research.

J Magn Reson Imaging. 2018-8-2

[7]
3D prostate histology reconstruction: an evaluation of image-based and fiducial-based algorithms.

Med Phys. 2013-9

[8]
Registration of in-vivo to ex-vivo MRI of surgically resected specimens: a pipeline for histology to in-vivo registration.

J Neurosci Methods. 2015-2-15

[9]
Spatially weighted mutual information (SWMI) for registration of digitally reconstructed ex vivo whole mount histology and in vivo prostate MRI.

Annu Int Conf IEEE Eng Med Biol Soc. 2011

[10]
Development of a registration framework to validate MRI with histology for prostate focal therapy.

Med Phys. 2015-12

引用本文的文献

[1]
Non-parametric prediction of brain MRI microstructure using transfer learning.

Imaging Neurosci (Camb). 2025-4-30

[2]
Axial and mean diffusivity predict myelin density in the hippocampus of pigs during early brain development, independent of sex.

Front Neurosci. 2025-5-19

[3]
Deep Learning-based Anatomy-Aware Morph Model for Registration of Prostate Whole-Mount Histopathology to MRI.

Radiol Imaging Cancer. 2025-5

[4]
Distortion-free steady-state diffusion-weighted imaging with magnetic resonance fingerprinting.

Med Phys. 2025-5-19

[5]
Cluster Analysis of VERDICT MRI for Cancer Tissue Characterization in Neuroendocrine Tumors.

NMR Biomed. 2025-6

[6]
Quantitative susceptibility mapping of the human carotid artery: Assessing sensitivity to elastin and collagen ex vivo.

Magn Reson Med. 2025-8

[7]
Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography.

Magn Reson Med. 2025-6

[8]
A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation.

bioRxiv. 2024-9-6

[9]
Evaluation of prostate cancer detection using micro-ultrasound versus MRI through co-registration to whole-mount pathology.

Sci Rep. 2024-8-14

[10]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索