文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于集成深度学习的乳腺癌亚型及浸润性诊断的全切片图像组织病理学图像分类

Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

作者信息

Balasubramanian Aadhi Aadhavan, Al-Heejawi Salah Mohammed Awad, Singh Akarsh, Breggia Anne, Ahmad Bilal, Christman Robert, Ryan Stephen T, Amal Saeed

机构信息

Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA.

College of Engineering, Northeastern University, Boston, MA 02115, USA.

出版信息

Cancers (Basel). 2024 Jun 14;16(12):2222. doi: 10.3390/cancers16122222.


DOI:10.3390/cancers16122222
PMID:38927927
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11201924/
Abstract

Cancer diagnosis and classification are pivotal for effective patient management and treatment planning. In this study, a comprehensive approach is presented utilizing ensemble deep learning techniques to analyze breast cancer histopathology images. Our datasets were based on two widely employed datasets from different centers for two different tasks: BACH and BreakHis. Within the BACH dataset, a proposed ensemble strategy was employed, incorporating VGG16 and ResNet50 architectures to achieve precise classification of breast cancer histopathology images. Introducing a novel image patching technique to preprocess a high-resolution image facilitated a focused analysis of localized regions of interest. The annotated BACH dataset encompassed 400 WSIs across four distinct classes: Normal, Benign, In Situ Carcinoma, and Invasive Carcinoma. In addition, the proposed ensemble was used on the BreakHis dataset, utilizing VGG16, ResNet34, and ResNet50 models to classify microscopic images into eight distinct categories (four benign and four malignant). For both datasets, a five-fold cross-validation approach was employed for rigorous training and testing. Preliminary experimental results indicated a patch classification accuracy of 95.31% (for the BACH dataset) and WSI image classification accuracy of 98.43% (BreakHis). This research significantly contributes to ongoing endeavors in harnessing artificial intelligence to advance breast cancer diagnosis, potentially fostering improved patient outcomes and alleviating healthcare burdens.

摘要

癌症诊断和分类对于有效的患者管理和治疗规划至关重要。在本研究中,提出了一种利用集成深度学习技术分析乳腺癌组织病理学图像的综合方法。我们的数据集基于来自不同中心的两个广泛使用的数据集,用于两项不同任务:BACH和BreakHis。在BACH数据集中,采用了一种提出的集成策略,结合VGG16和ResNet50架构来实现乳腺癌组织病理学图像的精确分类。引入一种新颖的图像修补技术对高分辨率图像进行预处理,便于对局部感兴趣区域进行重点分析。带注释的BACH数据集包含400张全切片图像,分为四个不同类别:正常、良性、原位癌和浸润癌。此外,将提出的集成方法用于BreakHis数据集,利用VGG16、ResNet34和ResNet50模型将显微图像分类为八个不同类别(四个良性和四个恶性)。对于这两个数据集,均采用五折交叉验证方法进行严格的训练和测试。初步实验结果表明,补丁分类准确率为95.31%(对于BACH数据集),全切片图像分类准确率为98.43%(BreakHis)。本研究对利用人工智能推进乳腺癌诊断的持续努力做出了重大贡献,有可能改善患者预后并减轻医疗负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/7d9ab77397ed/cancers-16-02222-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/76d35c6a6411/cancers-16-02222-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/3ec611860ba5/cancers-16-02222-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/90cc26a5ac60/cancers-16-02222-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/7b87656680e1/cancers-16-02222-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/7d9ab77397ed/cancers-16-02222-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/76d35c6a6411/cancers-16-02222-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/3ec611860ba5/cancers-16-02222-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/90cc26a5ac60/cancers-16-02222-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/7b87656680e1/cancers-16-02222-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007e/11201924/7d9ab77397ed/cancers-16-02222-g005.jpg

相似文献

[1]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[2]
A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images.

Diagnostics (Basel). 2022-12-30

[3]
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models.

Sensors (Basel). 2020-8-5

[4]
An end-to-end breast tumour classification model using context-based patch modelling - A BiLSTM approach for image classification.

Comput Med Imaging Graph. 2021-1

[5]
Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.

BMC Med Imaging. 2023-1-30

[6]
Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head.

Diagnostics (Basel). 2022-5-5

[7]
Deep Learning-Based Multi-Class Classification of Breast Digital Pathology Images.

Cancer Manag Res. 2021-6-10

[8]
Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.

Med Image Anal. 2021-10

[9]
Deep learning for colon cancer histopathological images analysis.

Comput Biol Med. 2021-9

[10]
Transfer Learning Based Lightweight Ensemble Model for Imbalanced Breast Cancer Classification.

IEEE/ACM Trans Comput Biol Bioinform. 2023

引用本文的文献

[1]
Predicting ROS1 and ALK fusions in NSCLC from H&E slides with a two-step vision transformer approach.

NPJ Precis Oncol. 2025-7-30

[2]
The Bayesian mixture expert recognition model for tobacco leaf curing stages based on feature fusion.

Plant Methods. 2025-6-16

[3]
Research on the developments of artificial intelligence in radiomics for oncology over the past decade: a bibliometric and visualized analysis.

Discov Oncol. 2025-5-14

[4]
The Potential Diagnostic Application of Artificial Intelligence in Breast Cancer.

Curr Pharm Des. 2025-4-8

[5]
Enhanced Multi-Class Breast Cancer Classification from Whole-Slide Histopathology Images Using a Proposed Deep Learning Model.

Diagnostics (Basel). 2025-2-27

[6]
A multi-patch-based deep learning model with VGG19 for breast cancer classifications in the pathology images.

Digit Health. 2025-1-17

[7]
Detecting cell types and densities in the tumor microenvironment improves prognostic risk assessment for breast cancer.

Biomol Biomed. 2024-12-11

本文引用的文献

[1]
Applications of AI in multi-modal imaging for cardiovascular disease.

Front Radiol. 2024-1-12

[2]
Enhancing Prostate Cancer Diagnosis with a Novel Artificial Intelligence-Based Web Application: Synergizing Deep Learning Models, Multimodal Data, and Insights from Usability Study with Pathologists.

Cancers (Basel). 2023-11-30

[3]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[4]
A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images.

Diagnostics (Basel). 2022-12-30

[5]
Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning.

Comput Intell Neurosci. 2022

[6]
DRDA-Net: Dense residual dual-shuffle attention network for breast cancer classification using histopathological images.

Comput Biol Med. 2022-6

[7]
Histological Validation of MRI: A Review of Challenges in Registration of Imaging and Whole-Mount Histopathology.

J Magn Reson Imaging. 2022-1

[8]
AI in Medical Imaging Informatics: Current Challenges and Future Directions.

IEEE J Biomed Health Inform. 2020-7

[9]
Breast cancer histopathology image classification through assembling multiple compact CNNs.

BMC Med Inform Decis Mak. 2019-10-22

[10]
BACH: Grand challenge on breast cancer histology images.

Med Image Anal. 2019-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索