Balasubramanian Aadhi Aadhavan, Al-Heejawi Salah Mohammed Awad, Singh Akarsh, Breggia Anne, Ahmad Bilal, Christman Robert, Ryan Stephen T, Amal Saeed
Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA.
College of Engineering, Northeastern University, Boston, MA 02115, USA.
Cancers (Basel). 2024 Jun 14;16(12):2222. doi: 10.3390/cancers16122222.
Cancer diagnosis and classification are pivotal for effective patient management and treatment planning. In this study, a comprehensive approach is presented utilizing ensemble deep learning techniques to analyze breast cancer histopathology images. Our datasets were based on two widely employed datasets from different centers for two different tasks: BACH and BreakHis. Within the BACH dataset, a proposed ensemble strategy was employed, incorporating VGG16 and ResNet50 architectures to achieve precise classification of breast cancer histopathology images. Introducing a novel image patching technique to preprocess a high-resolution image facilitated a focused analysis of localized regions of interest. The annotated BACH dataset encompassed 400 WSIs across four distinct classes: Normal, Benign, In Situ Carcinoma, and Invasive Carcinoma. In addition, the proposed ensemble was used on the BreakHis dataset, utilizing VGG16, ResNet34, and ResNet50 models to classify microscopic images into eight distinct categories (four benign and four malignant). For both datasets, a five-fold cross-validation approach was employed for rigorous training and testing. Preliminary experimental results indicated a patch classification accuracy of 95.31% (for the BACH dataset) and WSI image classification accuracy of 98.43% (BreakHis). This research significantly contributes to ongoing endeavors in harnessing artificial intelligence to advance breast cancer diagnosis, potentially fostering improved patient outcomes and alleviating healthcare burdens.
癌症诊断和分类对于有效的患者管理和治疗规划至关重要。在本研究中,提出了一种利用集成深度学习技术分析乳腺癌组织病理学图像的综合方法。我们的数据集基于来自不同中心的两个广泛使用的数据集,用于两项不同任务:BACH和BreakHis。在BACH数据集中,采用了一种提出的集成策略,结合VGG16和ResNet50架构来实现乳腺癌组织病理学图像的精确分类。引入一种新颖的图像修补技术对高分辨率图像进行预处理,便于对局部感兴趣区域进行重点分析。带注释的BACH数据集包含400张全切片图像,分为四个不同类别:正常、良性、原位癌和浸润癌。此外,将提出的集成方法用于BreakHis数据集,利用VGG16、ResNet34和ResNet50模型将显微图像分类为八个不同类别(四个良性和四个恶性)。对于这两个数据集,均采用五折交叉验证方法进行严格的训练和测试。初步实验结果表明,补丁分类准确率为95.31%(对于BACH数据集),全切片图像分类准确率为98.43%(BreakHis)。本研究对利用人工智能推进乳腺癌诊断的持续努力做出了重大贡献,有可能改善患者预后并减轻医疗负担。
Diagnostics (Basel). 2022-12-30
Sensors (Basel). 2020-8-5
Cancer Manag Res. 2021-6-10
Comput Biol Med. 2021-9
IEEE/ACM Trans Comput Biol Bioinform. 2023
NPJ Precis Oncol. 2025-7-30
Curr Pharm Des. 2025-4-8
Front Radiol. 2024-1-12
CA Cancer J Clin. 2023-1
Diagnostics (Basel). 2022-12-30
Comput Intell Neurosci. 2022
IEEE J Biomed Health Inform. 2020-7
BMC Med Inform Decis Mak. 2019-10-22
Med Image Anal. 2019-5-31