Chau Loo Kung Gustavo, Weber Emmanuelle M M, Batra Ankita, Ni Lijun, Zeineh Michael, Chaudhari Akshay, Adeli Ehsan, Knowles Juliet K, McNab Jennifer A
Department of Bioengineering, Stanford University, Stanford, CA, United States.
Department of Radiology, Stanford University, Stanford, CA, United States.
Imaging Neurosci (Camb). 2025 Apr 30;3. doi: 10.1162/imag_a_00548. eCollection 2025.
Magnetic resonance imaging (MRI) can be sensitive to tissue microstructural features and infer parameterized features by performing a voxel-wise fit of the signal to a biophysical model. However, biophysical models rely on simplified representations of brain tissue. Machine learning (ML) techniques may serve as a data-driven approach to optimize for microstructural feature extraction. Unfortunately, training an ML model for these applications requires a large database of paired specimen MRI and histology datasets, which is costly, cumbersome, and challenging to acquire. In this work, we present a novel approach allowing a reliable estimation of brain tissue microstructure using MRI as inputs, with a minimal amount of paired MRI-histology data. Our method involves pretraining a conditional normalizing flow model to predict the distribution of microstructural features. The model is trained on synthetic MRI data generated from unpaired histology and MRI physics, reducing the data requirement in future steps. The synthetic MRI generation data combines segmentation of a publicly available EM slice, feature extraction and MRI simulators. Subsequently, the model is fine-tuned using experimental MRI/Electron Microscopy (EM) data of nine excised mouse brains through transfer learning. This approach enables the prediction of non-parameterized joint distributions of g-ratio and axon diameters for a given voxel based on MRI input. Results show a close agreement between the distributions predicted by the network and the EM ground-truth histograms (mean Jensen-Shannon Distances of 0.24 and 0.23 on the test set, for axon diameter and g-ratios respectively, compared to distances of 0.18 and 0.18 of a direct fitting of a Gamma distribution to the ground truth). The approach also shows up to 4% decreased mean percent errors of the distributions compared to biophysical model fitting and increased prediction capabilities that are consistent with electron microscopy validation and previous biological studies. For example, g-ratio values predicted along the corpus callosum anterior-posterior axis show a significant difference for mice after myelin remodeling seizures are well established (p 0.001) but not before seizure onset (p = 0.562). The results suggest that pretraining on synthetic MRI and then using transfer learning is an effective approach for addressing the lack of paired MRI/histology data when training ML models for microstructure prediction. This approach is a step toward developing a versatile and widely used foundation model for predicting microstructural features using MRI.
磁共振成像(MRI)对组织微观结构特征敏感,可通过将信号进行体素级拟合到生物物理模型来推断参数化特征。然而,生物物理模型依赖于对脑组织的简化表示。机器学习(ML)技术可作为一种数据驱动的方法来优化微观结构特征提取。不幸的是,为这些应用训练ML模型需要大量配对的标本MRI和组织学数据集,这成本高昂、操作繁琐且获取具有挑战性。在这项工作中,我们提出了一种新颖的方法,使用MRI作为输入,以最少的配对MRI - 组织学数据可靠地估计脑组织微观结构。我们的方法包括预训练一个条件归一化流模型来预测微观结构特征的分布。该模型在从未配对的组织学和MRI物理生成的合成MRI数据上进行训练,减少了后续步骤中的数据需求。合成MRI生成数据结合了公开可用的电子显微镜切片的分割、特征提取和MRI模拟器。随后,通过迁移学习使用九个切除的小鼠脑的实验性MRI/电子显微镜(EM)数据对模型进行微调。这种方法能够基于MRI输入预测给定体素的g - 比率和轴突直径的非参数化联合分布。结果表明,网络预测的分布与EM真实直方图之间具有密切一致性(测试集上轴突直径和g - 比率的平均 Jensen - Shannon 距离分别为0.24和0.23,相比之下,将伽马分布直接拟合到真实数据的距离为0.18和0.18)。与生物物理模型拟合相比,该方法还显示分布的平均百分比误差降低了高达4%,并且预测能力增强,这与电子显微镜验证和先前的生物学研究一致。例如,沿胼胝体前后轴预测的g - 比率值在髓鞘重塑癫痫充分发作后的小鼠中显示出显著差异(p < 0.001),但在癫痫发作前没有差异(p = 0.562)。结果表明,在合成MRI上进行预训练然后使用迁移学习是在训练用于微观结构预测的ML模型时解决缺乏配对MRI/组织学数据问题的有效方法。这种方法朝着开发一种通用且广泛使用的基础模型迈出了一步,该模型可使用MRI预测微观结构特征。