Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
Harvard Medical School, Harvard University, Boston, Massachusetts, USA.
J Biophotonics. 2021 Feb;14(2):e202000341. doi: 10.1002/jbio.202000341. Epub 2020 Nov 19.
Temperature measurement at the nanoscale has brought insight to a wide array of research interests in modern chemistry, physics, and biology. These measurements have been enabled by the advent of nanothermometers, which relay nanoscale temperature information through the analysis of their intrinsic photophysical behavior. In the past decade, several nanothermometers have been developed including dyes, nanodiamonds, fluorescent proteins, nucleotides, and nanoparticles. However, temperature measurement using intact DNA has not yet been achieved. Here, we present a method to study the temperature sensitivity of the DNA molecule within a physiologic temperature range when complexed with fluorescent dye. We theoretically and experimentally report the temperature sensitivity of the DNA-Hoechst 33342 complex in different sizes of double-stranded oligonucleotides and plasmids, showing its potential use as a nanothermometer. These findings allow for extending the thermal study of DNA to several research fields including DNA nanotechnology, optical tweezers, and DNA nanoparticles.
在纳米尺度上进行温度测量为现代化学、物理和生物学的广泛研究兴趣带来了新的认识。这些测量得益于纳米温度计的出现,纳米温度计通过分析其固有光物理行为来传递纳米尺度的温度信息。在过去的十年中,已经开发出了几种纳米温度计,包括染料、纳米金刚石、荧光蛋白、核苷酸和纳米粒子。然而,使用完整的 DNA 进行温度测量尚未实现。在这里,我们提出了一种方法,用于研究与荧光染料复合时 DNA 分子在生理温度范围内的温度敏感性。我们从理论和实验上报告了不同大小的双链寡核苷酸和质粒中 DNA- Hoechst 33342 复合物的温度敏感性,表明其可用作纳米温度计。这些发现允许将 DNA 的热研究扩展到包括 DNA 纳米技术、光学镊子和 DNA 纳米粒子在内的多个研究领域。